- -
UPV
 
Home UPV :: Profiles :: Media :: Web news

Nervous system injuries

Researchers from the CBIT-UPV have designed new neurocables for repairing them

[ 11/06/2021 ]

Researchers from the Universitat Politčcnica de Valčncia (UPV), belonging to the Centre for Biomaterials and Tissue Engineering (CBIT), have designed and characterized in vitro new neurocables for repairing nervous system injuries.

As the CBIT-UPV team explains, there is currently no effective clinical therapy for the regeneration of nerve injuries on nerve lengths greater than 2 cm, where the nerve cannot find its target and, often, that disoriented nerve ends up knotting itself into a painful ball called a neuroma.

In minor lesions, a nerve graft is used, usually from the patient himself (autograft) or from a donor (allograft). However, when it comes to large injuries greater than 2 cm in length, satisfactory results have not been achieved yet. Therefore, it is strategic to identify new ways to reconnect the severed nerves and to stimulate their repair and regeneration.

The alternative: the CBIT-UPV neurocables

Given the impossibility of regenerating tracts in large nerve injuries, UPV researchers have suggested using a multimodular device called a neurocable as a solution to this problem. This device is made up of biomaterials with a cylindrical shape of natural and/or synthetic origin, inside which bundles of parallel fibrils are arranged to facilitate regeneration. In this way, the length of the neurocable may vary between 0.6 and 50 cm, depending on the size of the injury, and using a greater or lesser amount of cylindrical modules.

“Each neurocable it is capable of housing auxiliary cells inside to promote axonal growth, creating a structure similar to that of a nerve that is not damaged and that could be of help to promote functional recovery”, explains Cristina Martínez Ramos.

Future application

Designed and characterized in vitro in their laboratories –and patented by the UPV–, the concept behind neurocables could have a future application in the treatment of pathologies arising from injuries in the tract-like structures of the peripheral nervous system and the central nervous system, caused by trauma, neurodegenerative diseases, traffic and work accidents, wounds caused by firearms, etc.

“This technology has so far been characterized only in vitro, with implant prototypes capable of covering lesion lengths of around 2 cm. The promising in vitro results have led us to patent this idea, which must be validated through in vivo experiments in animal models with large injuries”, highlights Cristina Martínez Ramos.

Further information

Outstanding news


The Diamond Army The Diamond Army
Two students came up with the UPV initiative that has engaged more than 1,600 volunteers and shattered the false myth of the 'crystal generation'
ARWU 2024 ARWU 2024
The Shanghai ranking reaffirms the UPV as the best polytechnic in Spain for yet another year
Distinction of the Generalitat for Scientific Merit Distinction of the Generalitat for Scientific Merit
Guanter has been distinguished in recognition of his research excellence in the development of satellite methods for environmental applications
The new statutes come into force The new statutes come into force
The Universitat Politčcnica de Valčncia is the first university in Spain with statutes adapted to the new LOSU
NanoNIR project against breast cancer NanoNIR project against breast cancer
UPV Researcher Carla Arnau del Valle receives an EU Marie Curie grant to develop biosensors for the early detection of this cancer
Large artificial intelligence language models, increasingly unreliable Large artificial intelligence language models, increasingly unreliable
According to a study by the Universitat Politčcnica de Valčncia, ValgrAI and the University of Cambridge, published in the journal Nature



EMAS upv