DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS
(ORGANIC SPECTROSCOPY)

UV/VIS SPECTROSCOPY

Hermenegildo García Gómez
Departamento de Química
Instituto de Tecnología Química
Universidad Politécnica de Valencia
46022 Valencia

E-mail: hgarcia@qim.upv.es
Telephone: +34 96 387 7807 or ext. 78572/73441
Fax: + 34 96 387 7809
The nature of light

- Light exhibits dualistic properties:
 - Depending on the type of experiment performed it behaves as either a wave or particle
 - Light as a wave: electromagnetic wave
 - Light as a particle: photons

- What are waves?
 - A traveling disturbance that transports energy but not matter
 - With light energy is transported by oscillating electric and magnetic fields
Electronic Excitation by UV/Vis Spectroscopy:

- **X-ray:** core electron excitation
- **UV:** valance electronic excitation
- **IR:** molecular vibrations
- **Radio waves:** Nuclear spin states (in a magnetic field)

![Electromagnetic spectrum diagram](image)
The electromagnetic spectrum and nature of the light.

The wavelength and amount of light that a compound absorbs depends on its molecular structure and the concentration of the compound used.

The concentration dependence follows Beer’s Law.

\[A = \varepsilon b c \]

Where \(A \) is absorbance (no units, since \(A = \log \frac{I_0}{I} \))

\(\varepsilon \) is the molar absorptivity with units of \(\text{L mol}^{-1} \text{ cm}^{-1} \)

\(b \) is the path length of the sample - that is, the path length of the cuvette in which the sample is contained (typically in cm).

\(c \) is the concentration of the compound in solution, expressed in mol L\(^{-1} \)
Molecules have quantized energy levels: ex. electronic energy levels.

\[\Delta E = h\nu \]

Each electronic energy level (configuration) has many vibrational energy levels.
Absorptions having $\lambda_{max} < 200$ nm are difficult to observe because everything (including quartz glass and air) absorbs in this spectral region.
Example: ethylene absorbs at longer wavelengths:

$$\lambda_{\text{max}} = 165 \text{ nm} \ \varepsilon = 10,000$$
The \(n \rightarrow \pi^* \) transition is at even lower wavelengths but is not as strong as \(p \rightarrow \pi^* \) transitions. It is said to be “forbidden.”

Example:

Acetone: \(n-\sigma^* \quad \lambda_{\text{max}} = 188 \text{ nm} \quad ; \quad \varepsilon = 1860 \)

\(n-\pi^* \quad \lambda_{\text{max}} = 279 \text{ nm} \quad ; \quad \varepsilon = 15 \)
\[\begin{align*}
\text{C} - & \text{C} \quad \sigma \rightarrow \sigma^* \quad 135 \text{ nm} \\
\text{C} = & \text{C} \quad \pi \rightarrow \pi^* \quad 165 \text{ nm} \\
\text{C} - & \text{H} \quad \text{n} \rightarrow \sigma^* \quad 183 \text{ nm} \quad \text{weak} \\
\text{C} = & \text{O} \quad \pi \rightarrow \pi^* \quad 150 \text{ nm} \\
\text{C} = & \text{O} \quad \text{n} \rightarrow \sigma^* \quad 188 \text{ nm} \\
\text{C} = & \text{O} \quad \text{n} \rightarrow \pi^* \quad 279 \text{ nm} \quad \text{weak}
\end{align*} \]
Conjugated systems:

Preferred transition is between Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO).

Note: Additional conjugation (double bonds) lowers the HOMO-LUMO energy gap:
Example:

1,3 butadiene: \(\lambda_{\text{max}} = 217 \text{ nm} \) ; \(\varepsilon = 21,000 \)
1,3,5-hexatriene \(\lambda_{\text{max}} = 258 \text{ nm} \) ; \(\varepsilon = 35,000 \)
Similar structures have similar UV spectra:

\[\lambda_{\text{max}} = 238, 305 \text{ nm} \]

\[\lambda_{\text{max}} = 240, 311 \text{ nm} \]

\[\lambda_{\text{max}} = 173, 192 \text{ nm} \]
Woodward-Fieser Rules for Dienes

<table>
<thead>
<tr>
<th>Homoannular</th>
<th>Heteroannular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td>Parent</td>
</tr>
<tr>
<td>$\lambda = 253$ nm</td>
<td>$\lambda = 214$ nm</td>
</tr>
</tbody>
</table>

For more than 4 conjugated double bonds:

$$\lambda_{\text{max}} = 114 + 5(\# \text{ of alkyl groups}) + n(48.0-1.7n)$$
Examples

Parent: (heteroannular)
3 alkyls (exocyclic)
TOTAL
(Actual = 235 nm)

Parent: (homooannular)
3 alkyls (exocyclic)
TOTAL
(Actual = 275 nm)

Parent: (5-member ring ketone)
(alpha hydroxyl)
(beta alkyl - note part of ring)
Total:
\[\lambda_{\text{max}} = 114 + 5(8) + 11(48.0 - 1.7 \times 11) = 476 \text{ nm} \]

\[\lambda_{\text{max}}(\text{Actual}) = 474. \]