Shear viscosity of *n*-alkanes in the zero density region

Juan Carlos Castro Palacio

Research Associate

Department of Earth Science and Eng., Imperial College London, London, SW7 2AZ, UK e-mail: j.castro-palacio@imperial.ac.uk

The shear viscosity of *n*-alkanes in the zero-density limit has been calculated by the classicaltrajectory method that has been successfully used to predict the viscosity of real dilute gases [1]. The *n*-alkane molecules were modelled as rigid linear chains consisting of n_c -1 spherical segments (n_c being the number of carbon atoms) that interact through a combination of sitesite Mie n-6 potentials (n=9-14). The moment of inertia of each n-alkane was used to determine the site-site separation. The work builds on the specific case of the 12-6 (Lennard-Jones, LJ) site-site potential [2], where it was demonstrated [3] that it is not possible to find a unique pair of LJ parameters, ϵ and σ , to reproduce the measured viscosity values of all *n*alkanes. However, based on the best fit values of ϵ and σ , for C₃H₈, *n*-C₄H₁₀, *n*-C₆H₁₄ and *n*-C₇H₁₆, it has been shown that the ratio $\sqrt{\epsilon}/\sigma^2$ is a linear function of n_c . Hence, a model was developed that predicts the viscosity values to within ± 5 %, of experimental ones, for *n*alkanes from C_3H_8 to $n-C_9H_{20}$ and within $\pm 5-10$ % for longer *n*-alkanes. Here, new results that allow for a greater flexibility in the steepness of the repulsive wall by employing the Mie site-site potential, are presented. Based on the best scaling parameters (n, σ , and ϵ) obtained by fitting to the experimental viscosity of C_3H_8 , $n-C_4H_{10}$, $n-C_6H_{14}$ and $n-C_7H_{16}$, a new model was developed that predicts shear viscosities of long *n*-alkanes to within ± 5 %. The limiting case of the site-site potential, namely the representation by an effective spherical LJ 12-6 potential, is also discussed [4]. This correlative approach, which makes use of a semiempirical relationship for the LJ parameter σ , yields viscosities to within $\pm 2-3$ % of experimental ones.

References

- [1] R. Hellmann, E. Bich, V. Vesovic Cross second virial coefficients and dilute gas transport properties of the $(CH_4 + CO_2)$, $(CH_4 + H_2S)$, and $(H_2S + CO_2)$ systems from accurate intermolecular potential energy surfaces, J. Chem. Thermodyn. 102, 429 (2016) and references therein.
- [2] R. Hellmann, N. Riesco, V. Vesovic, Calculation of the transport properties of a dilute gas consisting of Lennard-Jones chains, J. Chem. Phys. 138, 084309 (2013).
- [3] J. C. Castro-Palacio, N. Riesco, V. Vesovic, Dilute gas viscosity of *n*-alkanes represented by rigid Lennard-Jones chains, Mol. Phys. 114, 3171 (2016).
- [4] N. Riesco, V. Vesovic, Extended hard-sphere model for predicting the viscosity of longchain *n*-alkanes, Fluid Phase Equilib. 425, 385 (2016).