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Abstract

We show the existence of chaotic (in the sense of Devaney) polynomials on Banach spaces of
g-summable sequences. Such polynomiatonsist of composition of the backward shift with a cer-
tain fixed polynomialp of one complex variable on each coordinate. In general we also prove that
is chaotic in the sense of Auslander and Yorke if and only if 0 belongs to the Julia get of
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

A continuous mapy : X — X on a metric spac# istopologically transitivef, for each
pairU, V C X of non-empty open sets, thereiig N so thatf” (U)NV # @. For complete,
separable and perfect (i.e., without isolated points) spacdgansitivity is equivalent to
the existence af € X such that the orbit

Orb(x) :={x, fx, fzx, Lo

is dense inX. The pointx is then callechypercyclicand the set of hypercyclic points is a
denseGs-subset ofX .

The mapy is calledchaoticin the sense of Auslander and Yorke (from now #iY;
chaotig if it is transitive and it has sensitive dependence on initial conditions, that is
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e >0VxeXVé6>03qye X IneN:
dx,y)<é8 but d(f"x, f'y) >e.

The mapf is chaotic in the sense of Devaney (from now Dachaotig if it is tran-
sitive, the setP of periodic points off is dense inX, and f has sensitive dependence
on initial conditions. Several authors (see, e.g., [1]) showed that sensitive dependence on
initial conditions is redundant in Devaney’s definition.

We will be concerned with chaos for polynomials on (separable) complex Banach
spacesX.

A map Q:X — X is an m-homogeneous polynomiél there existsA:X x X x
... x X — X multilinear and continuous such thét(x) = A(x, x,...,x) forall x € X.

P:X — X is a (continuouspolynomialif P = Zfﬂzo Om, Where eachQ,, is anm-
homogeneous polynomial.

In this context transitivity is equivalent to the existence of dense orbits, th& is,
hypercyclic.

Many examples of hypercyclic linear operators (in other words, hypercyclic 1-homo-
geneous polynomials) on Banach spaces are known. See, e.g., the survey of Grosse-
Erdmann [3]. However, in contrast to this fact, Bernardes showed that there are no hyper-
cyclic m-homogeneous polynomials of degree- 1 on any Banach space [2]. Motivated
by this result, Aron (personal communication) asked whether there exist hypercyclic non-
homogeneous polynomials of degree strictly greater than 1 on Banach spaces. Here we
solve Aron’s question affirmatively by showing that there are even D-chaotic polynomials
of degree greater than 1 on Banach spaces. In [6] it was proved that there are chaotic homo-
geneous polynomials of degree> 1 on Fréchet spaces. More examples of hypercyclic
and chaotic polynomials on Banach and Fréchet spaces are given in [5].

Our polynomials will be defined on spacEsof ¢g-summable sequences{ly < o)

oo 1/q
lg = !x = (x)i € C/|Ixllq := (Z |x,»|q> < oo,,

i=1

and on the space of null sequences

co = [x = (x); € C/limx; =0, oo = sgp|x,»|}.

1

We first show that the polynomial of degree
P:X—> X, x=(x1,x2,...)— ((x2+1)m -1, (x3+ D" —1,...)

is D-chaotic onX =1, or cq, for anym > 1, thus answering Aron’s question.
This motivates us to study general polynomials of the form

P:X—X, x=(x1,x2,...) (p(xz),p(xg), ),

wherep : C — C is a fixed complex polynomial. We characterize AY-chao®a&nd show
that it is equivalent to the fact that O is a fixed pointpbelonging to the Julia set of.
Finally we prove that’ is D-chaotic if O is a repelling fixed point of.
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2. First examples
A classical result of Rolewicz [7] establishes that, o=, or co, the weighted back-
ward shift operator
AB X —> X, x=(x1,x2,..)> (Ax2,Ax3,...)

is hypercyclic if|x| > 1. Actually, it is D-chaotic.

By using the operator of Rolewicz and an argument with commutative diagrams, we
give the first examples of chaotic polynomials of degree greater than 1 defined on a Banach
space.

The following result, which is well known, can be found in, e.g., [4].

Lemma 2.1. Let X be a Banach space anf, g, and¢ be continuous maps defined &n
with values inX such that the diagram

X'*f>X

¢i ¢
X—f=x
is commutativéi.e.,¢ o f = g o ¢), and¢ has a dense range. |f is D-chaotic, thery is
D-chaaotic.
In this section we will consider the polynomials of degnee
P:X— X, (x)ir ((is1+D"-1),,

where X =1, or cg (1< q <o0) andm > 2. It is clear thatP = ) ;" ; Ox with
Or((x);) :i= (’Z)(x{ﬁrl)i a k-homogeneous continuous polynomial for eaciherefore
P is also well defined and continuous.

Proposition 2.2. P is D-chaotic.

Proof. We define¢: X — X, ¢((x;);) := (e* — 1);, which is locally Lipschitz (hence
continuous), and has dense range. We have, ferm andx € X, that

(¢ o AB)x = ¢((Axi41)i) = (™41 — 1); = (P o )x.
That is, the diagram
|
x—Lt>x

is commutative. By Lemma 2.1 we conclude tifais D-chaotic. O
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3. Chaotic polynomialsand Julia sets

Inspired by the examples of the previous section, we will consider now the general
polynomials

P:X—> X, ()i (P(xi+1))i’

wherep:C — C is a complex polynomial withp(0) = 0, a necessary condition in order
that P is well defined.

A natural question is whether the (chaotic) dynamics of the polynofial infinite
dimensions and the (chaotic) dynamics of the polynormiaF one complex variable are
related. We will show that the answer is positive.

We first recall some basic facts and definitions from complex dynamics.

A family A of meromorphic functions defined on an open Bet: C := C U {oo} is
normal if it is equicontinuous on any compact subset/of A sufficient condition for
normality is given by

Montel’s theorem. If there are three values that are omitted by evgrg A, then A is
normal.

Given a polynomiap : C — C (p(o0) := 00), its associatefatou setis
F(p):={zeC/A:={p", n e N} is normal on some neighbourhoodgf

TheJulia setis 7 (p) :=C \ F(p).

A periodic pointz of p with periodk is repellingif |(p*)’(z)| > 1.

The following equality (due to Fatou and Julia) relates the Julia set to the set of repelling
periodic points:

J(p) ={z € C/zis arepelling periodic point op}.

It is well known that, for polynomials of degree greater than 1, the Juligrge) is a
non-emptyp-invariant compact set such that the restrictian7 (p) — J (p) is D-chaotic.

We also need the following lemma, whose proof is included for the sake of complete-
ness.

Lemma 3.1. Let p: C — C be a polynomial wittdeq p) > 2. Given an elemenip € C in
the Julia set ofp, a neighbourhood/ c C of xg, ¢ > 0, and a finite collectiorizs, ..., z,}
of elements irC, then there arex; e U,i =1, ...,n, andm € N such that| p™ (x;) — z;|
<eg,i=1...,n.

Proof. Let u be a repelling periodic point op in U. If k is the period ofu, since
|(p"Y ()| > 1, there is a diskJo centered at: contained inU such thatp*(Ug) > Uo.
Then

Uj = p*(Uo) c pY™ V¥ (U0) =Uj41. jeN.

By Montel’'s theorem the family4 := {p/* : Ug — C/j € N} has, at most, two excep-
tional points which are omitted (actually, at most one siseés omitted) by.4. Therefore
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we find{y1, ..., y,} € C with |y; — z;| < & such thaty; is not omitted byA,i =1,...,n.
That is,

b1 | we =Ju;.

jeN jeN

In particular, since thé&/;’s are increasing, there ig € N satisfyingy; € U;; C p™(U),
i=1,...,n,wherem :=j'k. O

Theorem 3.2. Let X =, or co and letP : X — X be the continuous polynomial given by
P((x;)i) := (p(xi+1))i, Wwherep:C — C is a polynomial of degree strictly greater than
such thatp(0) = 0. The following conditions are equivalent

() P is AY-chaaotic,

(i) P is hypercyclic,
(iif) P has sensitive dependence on initial conditions,
(iv) O belongs to the Julia set of.

Proof. (i) = (ii) It follows from the definition of AY-chaotic.

(i) = (iii) Fore:=1, givenx € X andé > 0, we findk € N such that|x —
(x1,x2,...,x,0,0,...)] < 8. Thereisz € X hypercyclic forP so that||x — z|| < 8. Since
the orbit ofx := (x1,...,x,0,...) tends to 0, by the hypercyclicity of we getn ¢ N
satisfying|| P"x — P"z|| > 2. Thatis, eithefjl P"x — P"x| > g or || P"z — P"x|| > &.

(iii) = (iv) If 0 ¢ J (p) then{p", n € N} is normal on some neighbourhood of 0. This
implies that the sequence of derivativip™)’, n € N} is also normal on some neigh-
bourhood of 0. In particular, since 0 is a fixed pointgfwe have thaf(p")’, n € N} is
uniformly bounded on some neighbourhood of 0, that is, there éxigt > 0 such that
[(p™) (z)] < M forall n € N and for each € C such thatz| < §. Therefore,

Ip"zl <Mlzl, VneN, Vzi |z] <.
By definition of P we get
P x|l < M|x|l, VrneN, Vx: x| <3.

But this means thaP does not have sensitive dependence on initial conditions at 0, which
is a contradiction.

(iv) = (i) Since we already know that (ii) implies (iii) and th@t) + (iii ) = (i), we just
need to prove that (iv) implies (ii). By Lemma 3.1, for any finite collect{amn, . .., x,,}
c Candany > 0, there ardz1, ..., z,} C C andn € N such thatz;| < § and|p"z; — x;|
<$é,i=1,...,n. We are done if we show tha is transitive, i.e., if for any, y € X and
¢ > 0, there ara € N andy € X such that

[y—yll<e and [[P"y—x| <e.
Letm € N be such that

= @ 00 <5 and [y =01y 00 <5
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Pick § :=¢/2m and findn > m, {z1,...,zm} C C with |z;| < § and|p"z; — x;| <§,i =
1,...,m. Define then

Y= (yl,...,ym,O,...,O,anrll,...,zm,O,...).

We concludg|y — y|| < ¢ and

|P"y — x| < %—i— [(p"z1, ... P"zm, 0,..) = (¥1, ..., xm. 0,.. )| <& O

We would like to compare Theorem 3.2 with Proposition 2.2. The linear part of the poly-
nomial of Proposition 2.2 is the operataB, which is D-chaotic. In general, polynomial
dynamics is richer than linear dynamics in the sense that the linear part of an AY-chaotic
polynomial might be non-chaotic. More precisely, if we consider the complex polynomial
p(z) =z + Z2, itis clear that 0 is a non-repelling fixed point pfwhich belongs to the
Julia set ofp. Therefore, the corresponding polynomiatefined onX is AY-chaotic. On
the other hand, the linear part &fis the backward shifB, which is neither hypercyclic
nor has sensitive dependence on initial conditions!

Chaos in the sense of Devaney seems to be a stronger condition than AY-chaos, within
our framework.

Proposition 3.3. Let X =, and letP : X — X be the continuous polynomial given by
P((x;)i) == (p(xi+1))i, Wherep : C — C is a polynomial of degree strictly greater than
such thatp(0) = 0. If O is repelling thenP is D-chaotic.

Proof. Since repelling points are contained in the Julia set, in view of Theorem 3.2 we just
have to show the density of periodic points. kix X ands > 0 and selectp’(0)| > A > 1.
We pickm € Nwith ||x — (x1,...,x1,0,..)] <¢&/2ands < ¢/6m such thatp(Up) D AUg
for any diskUp centered at O of radius smaller thAnBy Lemma 3.1, we findi > m
and{z1.1,...,z1.m} C C such thatz1 ;| <8 and|p”z1; — xi| <48,i=1,..., m. Without
loss of generality: is chosen so thaz,filrk" < 1. Proceeding by induction we select
{z;ieC, j>1 i=1,...,m} satisfying|z;j4+1:| < A~/ and P'ziv1i =2, J €N,
i=1,...,m. We then define

Z.= (ZO,l, ce e 20,m> 0, ey O, ’zlfi, s Zlms O, ey 0, 2zn2-f_11, .. .),
wherezo; := p"z1i, i = 1,...,m. By definition z is a periodic point ofP, and taking
X:=(x1,...,%m,0,...), we have

o
_ _ e ¢ . \e
IIX—ZII<|IX—XI|+|IX—ZII<§+§+<E Ak">6<s. O
k=1

Remark 3.4. When X = cg, a stronger result can be obtained. Namely, all conditions in
Theorem 3.2 are equivalent to D-chaos®f For such a purpose we need to construct
periodic points as in the proof of the previous proposition, but this time we only need
that(z; ;) tends to 0 whery tends to infinity, which can be done if we just assume that 0
belongs to the Julia set gf.
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We do not know forX =1, if 0 € J (p) suffices to get thaP is D-chaotic, but we think
that this is not enough.

Conjecture35.1f X =1,, 1< g < oo, thenP:X — X is D-chaotic if and only iD is a
repelling fixed point op.
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