SO Sistemas operativos

Gestión de la memoria

Equipo "Sistemas Operativos DISCA/DSIC"

Universidad Politécnica de Valencia

Objetivos

- 1.- Introducir los conceptos y los problemas básicos de la gestión de memoria:
 - Memoria lógica vs. memoria física
 - Asignación de memoria a procesos
- 2.- Estudiar las técnicas básicas de asignación dispersa:
 - Paginación.
 - Segmentación.
 - Combinación de técnicas
 - Segmentación Paginada
 - Paginación multinivel.
- 3.- Entender la gestión de memoria virtual: problemas a resolver, implementación y efectos sobre el rendimiento del sistema.

TEMA 3.- Gestión de la memoria

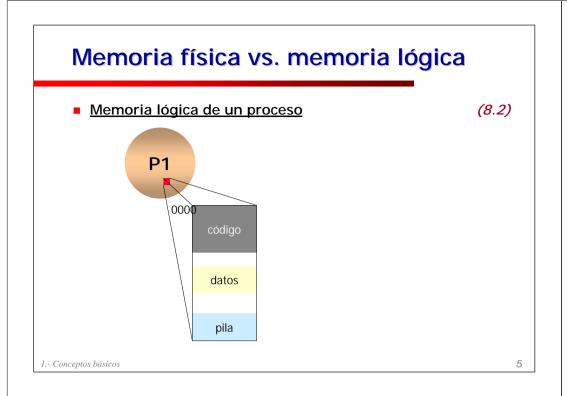
2

Indice y bibliografía

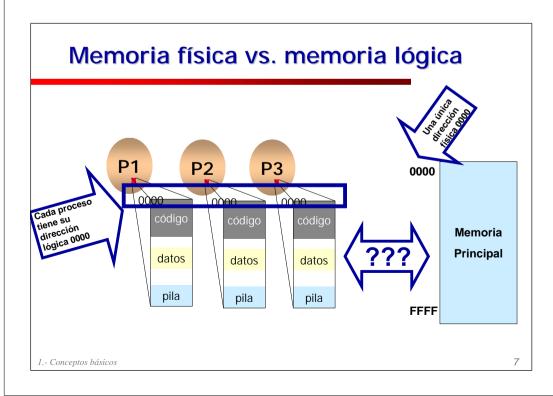
Índice

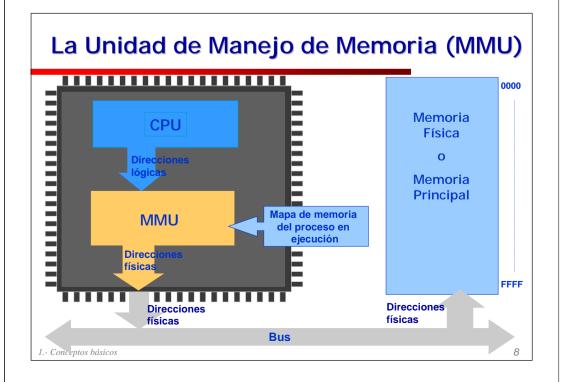
- 1. Conceptos básicos
- 2. Gestión de memoria
- 3. Asignación contigua
- 4. Asignación dispersa
- 5. Memoria virtual

Bibliografía


- A. Silberschatz, P.B. Galvin
- Sistemas Operativos. Conceptos Fundamentales. 5ª ed.
 - Capítulo 8: Apartados 8.1 (excepto 8.1.4), 8.2, 8.3, 8.4 (excepto 8.4.1), 8.5 (excepto 8.5.4, 8.5.5), 8.6 y 8.7 (excepto 8.7.1 y 8.7.2)
 - Capítulo 9: Apartados 9.1, 9.2, 9.3, 9.4, 9.5 (excepto 9.5.4.3), 9.6 (excepto 9.6.1) y 9.7.

Contenidos

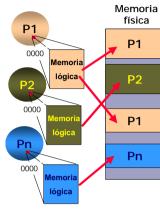



- 1.- Conceptos básicos
 - Memoria física vs. Memoria lógica
 - La Unidad de Manejo de Memoria (MMU)
- 2.- Gestión de memoria
- 3.- Asignación contigua
- 4.- Asignación dispersa
- 5.- Memoria virtual

TEMA 3.- Gestión de la memoria 3 TEMA 3.- Gestión de la memoria

1.- Conceptos básicos

2.- Gestión de memoria

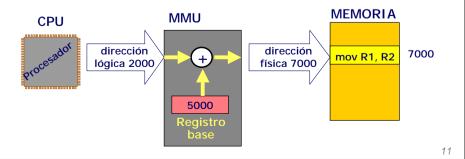

- El problema de gestión de la memoria
- El problema de la reubicación
- El problema de la escasez de memoria
- El problema de la asignación
- 3.- Asignación contigua
- 4.- Asignación dispersa
- 5.- Memoria virtual

9

El problema de gestión de la memoria

Todo sistema operativo debe ofrecer alguna solución para estos problemas:

- Reubicación
- Escasez
- Protección
- Asignación


10

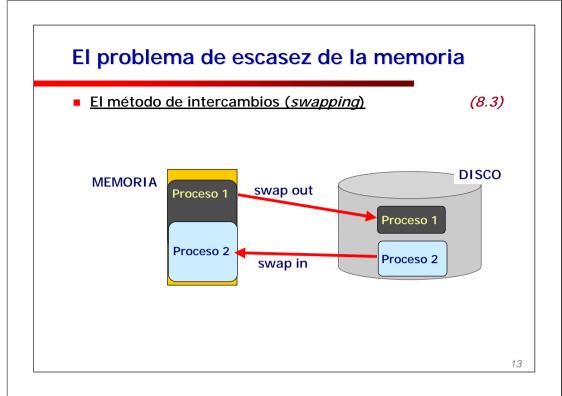
El problema de la reubicación

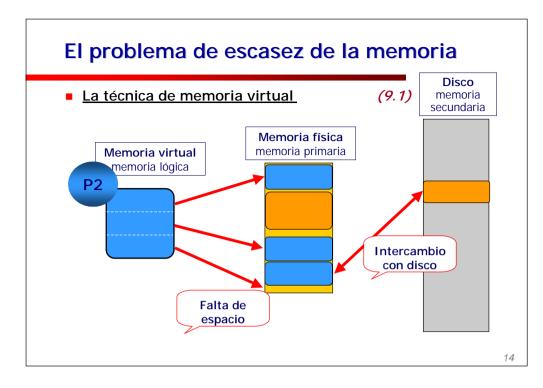
Reubicación en tiempo de ejecución: la MMU

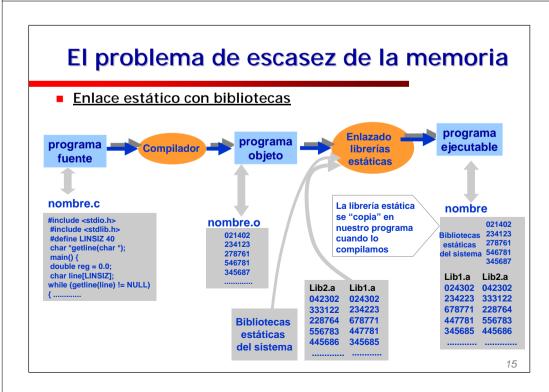
(8.1.1)

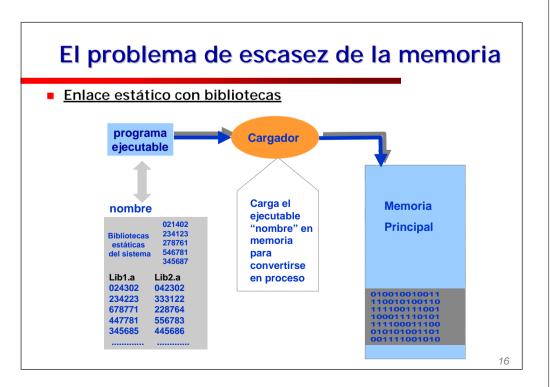
- Programa reubicable es aquel que puede ejecutarse en cualquier segmento de memoria física.
- Para permitir la reubicación en tiempo de ejecución es necesario un Hardware específico →MMU
- Ejemplo: MMU con registro base.

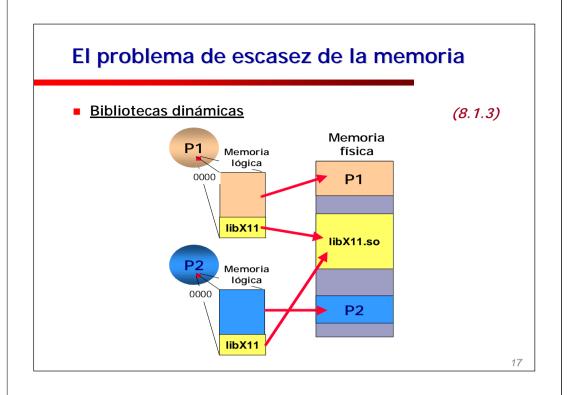
El problema de escasez de la memoria

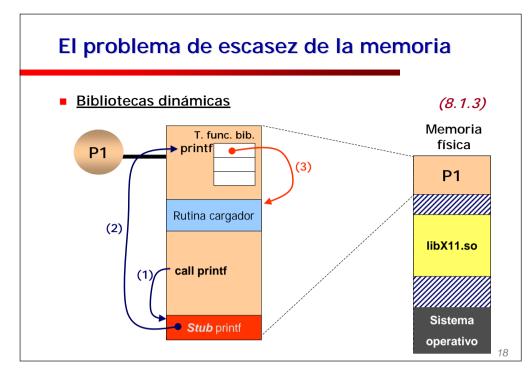

¿Por qué?

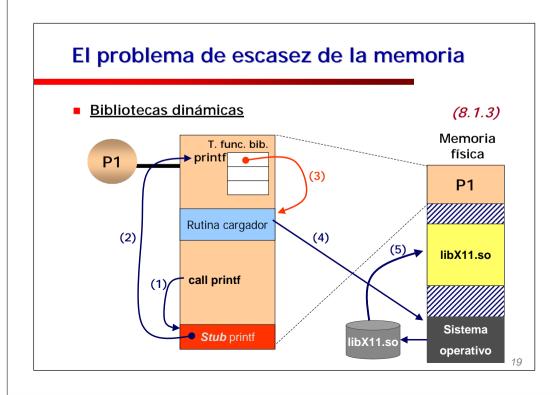

(9.1)

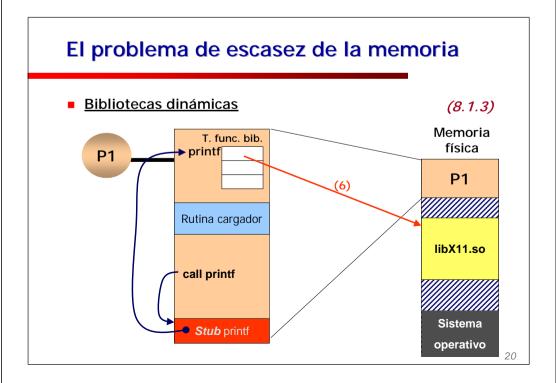

- Los procesos tienen una necesidad mayor de memoria.
- Aumentar el grado de multiprogramación

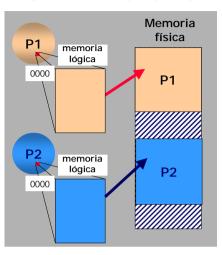

Técnicas para solucionarlo:

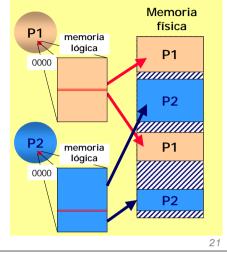

- Intercambios (Swapping)
- Memoria virtual
- Bibliotecas dinámicas











Asignación de la memoria

Asignación contigua y asignación dispersa

Asignación de la memoria

- Métodos de asignación
 - Asignación contigua (8.4):
 - Particiones fijas (8.4.2).
 - Particiones variables (8.4.2)
 - Asignación dispersa:
 - Paginación (8.5).
 - Segmentación (8.6).

22

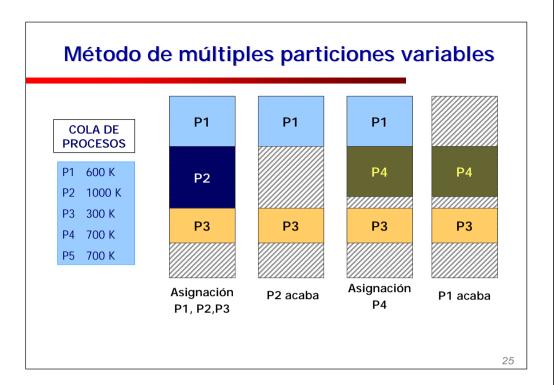
Contenidos

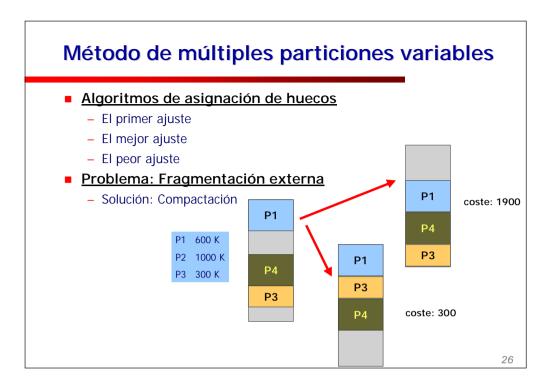
- 1.- Conceptos básicos
- 2.- Gestión de memoria

3.- Asignación contigua

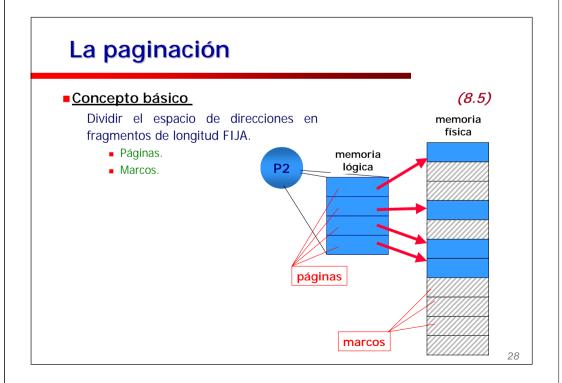
- Método de múltiples particiones fijas
- Método de múltiples particiones variables
- 4.- Asignación dispersa
- 5.- Memoria virtual

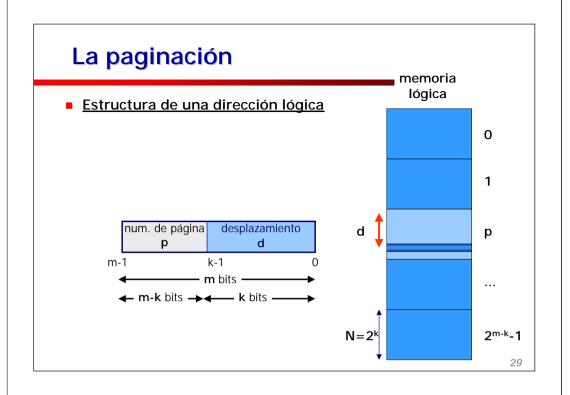
Método de múltiples particiones fijas

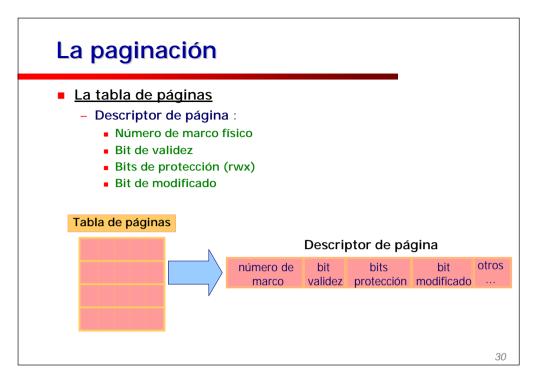

- Memoria dividida en particiones de diferente tamaño
- Cola única / múltiples colas

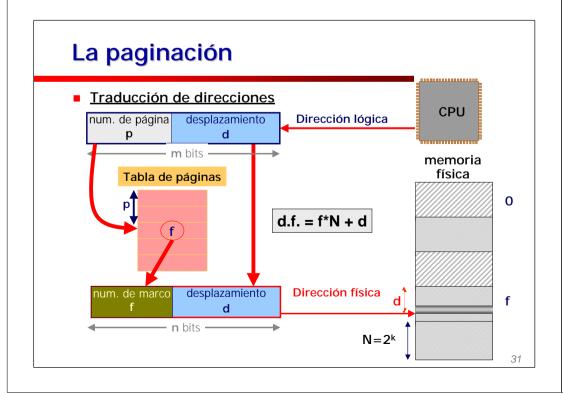

Problema: Fragmentación interna

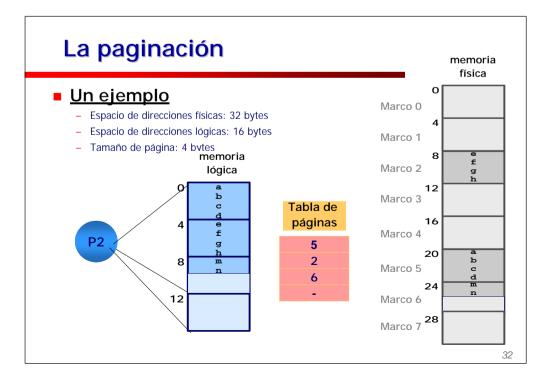
P4 necesita un hueco que ha sido ocupado por un proceso que desperdicia gran parte de su espacio.

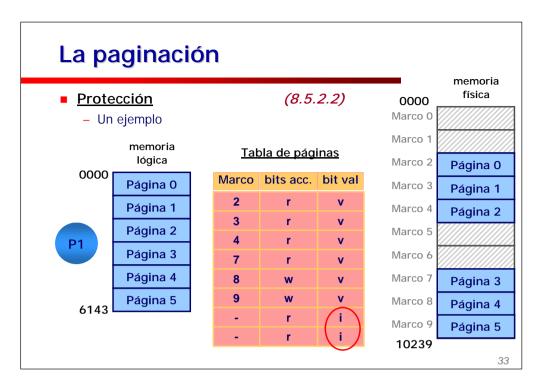



TEMA 3.- Gestión de la memoria 23





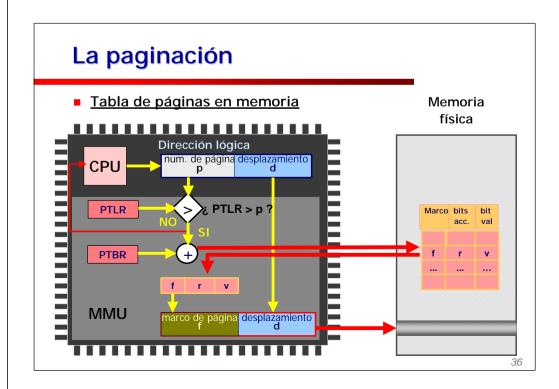

1.- Conceptos básicos 2.- Gestión de memoria 3.- Asignación contigua 4.- Asignación dispersa ■ Paginación (8.5) ■ Segmentación (8.6) ■ Técnicas combinadas - Segmentación paginada (8.7) - Paginación multinivel (8.5.3) 5.- Memoria virtual



La paginación

Análisis

- Ventajas
 - No aparece fragmentación externa .
 - Facilita la reubicación.
 - Proporciona protección.
- Inconvenientes
 - Fragmentación interna.
- Tamaños de página
 - Grandes → mucha fragmentación interna.
 - Pequeños → tablas de página muy grandes.


34

La paginación

■ Implementación de la tabla de páginas

(8.5.2)

- Registros de la MMU
- Memoria
- TLB

La paginación

■ Tabla de páginas en registros asociativos:

(8.5.2)

TLB: Translation Look-aside Buffers

- Los registros contienen:
 - clave.
 - contenido.
- La búsqueda se realiza por la clave en paralelo para todo el conjunto de registros asociativos

CPU Dirección lógica

num. de página desplazamiento

p administrativo de página desplazamiento

num. de página desplazamiento

d administrativo de página desplazamiento

d administrativo de página desplazamiento

d administrativo de página desplazamiento

g administrativo de página desplazamiento de página de página de

Memoria

física

Marco bits

acc val

Pila

La paginación

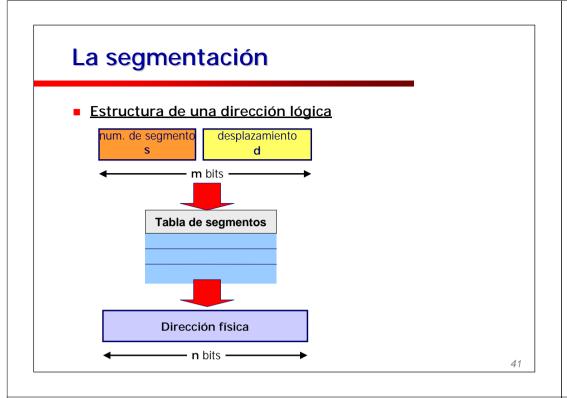
Tabla de páginas con TLB

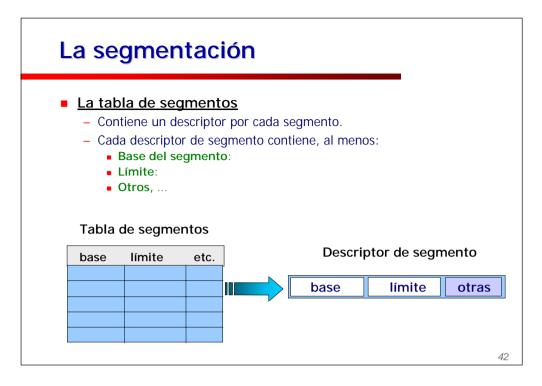
La segmentación

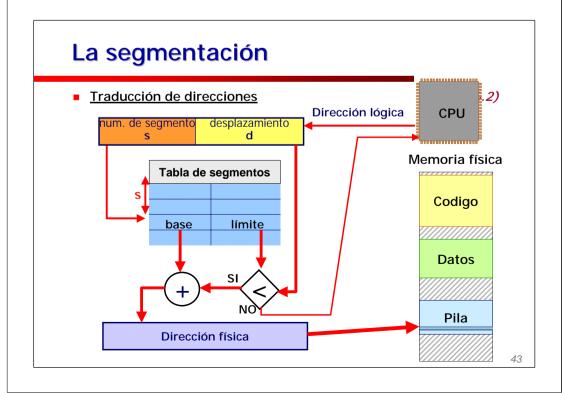
37

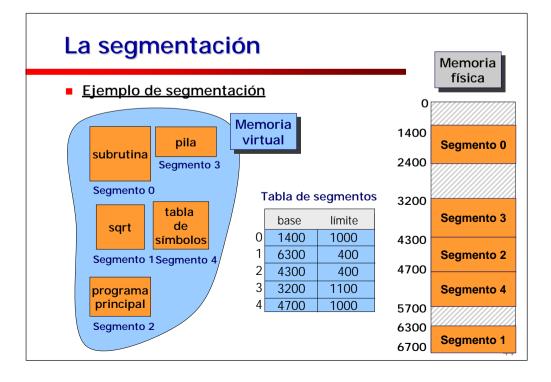
Contenidos

- 1.- Conceptos básicos
- 2.- Gestión de memoria
- 3.- Asignación contigua
- 4.- Asignación dispersa
- Paginación (8.5)
 - Segmentación (8.6)
 - Técnicas combinadas
 - Segmentación paginada (8.7)
 - Paginación multinivel (8.5.3)
 - 5.- Memoria virtual

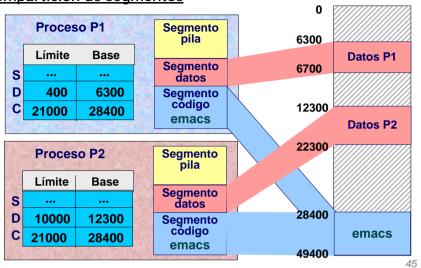

Concepto de segmentación (8.6)-Definición Memoria lógica Memoria física Dividir el espacio de direcciones en Datos **SEGMENT** fragmentos de longitud VARIABLE. datox dw Tipos de Segmento Codigo datoy dw Código Datos Datos **ENDS** Pila -Propiedades de los segmentos Datos Codigo **SEGMENT** Codigo ENDS

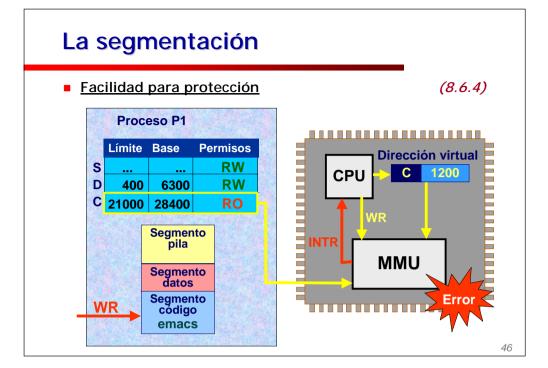

Pila **SEGMENT**


Pila **ENDS**


500

TEMA 3.- Gestión de la memoria 39





La segmentación

Compartición de segmentos

La segmentación

- Análisis
 - Ventajas
 - No aparece fragmentación interna.
 - Facilita la reubicación.
 - Proporciona protección.
 - Inconvenientes
 - Fragmentación externa.
 - Tamaños de segmento
 - ullet Muy Grandes ullet aproximación a particiones variables.
 - Muy Pequeños → eliminaría la fragmentación externa, pero aumentaría el tamaño destinado a registros
 - Tamaño Fijo → Paginación

La segmentación

Implementación de la tabla de segmentos

(8.6.3)

- Registros de la MMU
- Memoria
- TLB

47

- 1.- Conceptos básicos
- 2.- Gestión de memoria
- 3.- Asignación contigua

4.- Asignación dispersa

- Paginación (8.5)
- Segmentación (8.6)
- Técnicas combinadas
 - Segmentación paginada (8.7)
 - Paginación multinivel (8.5.3)

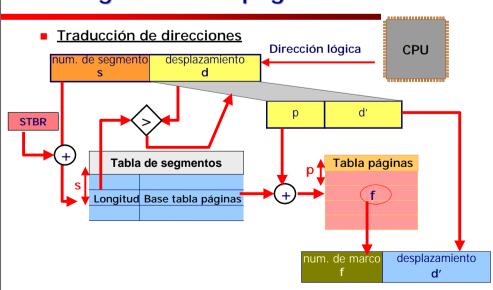
5.- Memoria virtual

TEMA 3.- Gestión de la memoria

La segmentación paginada

Motivación

(8.7)


Cuando los segmentos crecen:

- Aumenta la fragmentación externa.
- Aumenta el problema de encontrar un hueco libre en memoria para ubicarlo.
- Problema de asignación dinámica de memoria debido a la diferencia de tamaño de los segmentos.
- Solución:
 - Paginar los segmentos → segmentación paginada
- Límite Base Otras segmento Tabla páginas protec, ...

- La tabla de segmentos
 - Base de la tabla de páginas.
 - Tamaño del segmento

50

La segmentación paginada

La segmentación paginada

Análisis

49

- Ventajas
 - Ventajas de Segmentación
 - Ventajas de Paginación
 - Proporciona protección.
- Inconvenientes
 - Fragmentación interna.

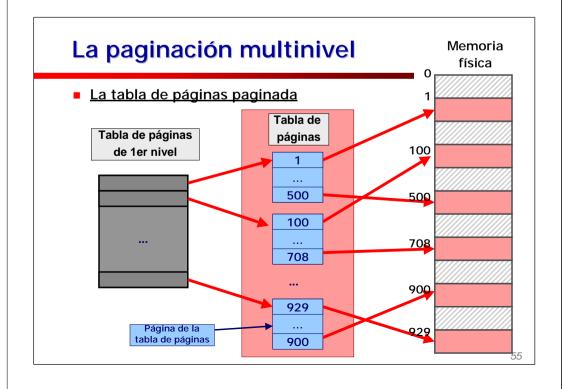
- 1.- Conceptos básicos
- 2.- Gestión de memoria
- 3.- Asignación contigua

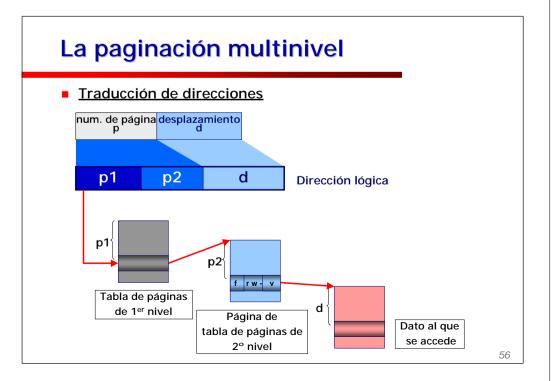
4.- Asignación dispersa

- Paginación (8.5)
- Segmentación (8.6)
- Técnicas combinadas

- Segmentación paginada (8.7)
- Paginación multinivel (8.5.3)
- 5.- Memoria virtual

TEMA 3.- Gestión de la memoria


53


La paginación multinivel

Motivación

(8.5.3)

- Para espacios de direcciones muy grandes, la tabla de páginas puede ser excesivamente grande.
- Solución:
 - Paginar la propia tabla de páginas

La paginación multinivel

Ejemplos reales de sistemas con paginación multinivel

- La arquitectura SPARC, con 32 bits de dirección soporta un esquema con 3 niveles de paginación.
- La arquitectura del Motorola 68030, con 32 bits de dirección soporta un esquema con 4 niveles de paginación.
- El Pentium de Intel, con 32 bits de dirección, soporta un esquema con 2 niveles de paginación.

Inconveniente:

Cada nivel de paginación requiere incrementar en uno el número de accesos a memoria para acceder a una dirección física.

57

La paginación multinivel

Solución:

- Utilizar un TLB
 - i386 de Intel, tiene un TLB con 32 entradas y consigue una tasa de aciertos del 98%
 - Motorola 68030 tiene un TLB de 22 entradas.
 - Pentium de Intel tiene dos TLBs:
 - el primero gestiona las páginas estándar de 4Kbytes y tiene una capacidad de 64 entradas.
 - el segundo para implementar páginas de 4Mb y tiene una capacidad de 8 entradas
- Utilizar memoria caché para almacenar tablas de páginas. Con esto el sistema se ralentizará, pero únicamente entre un 20% y un 40%.

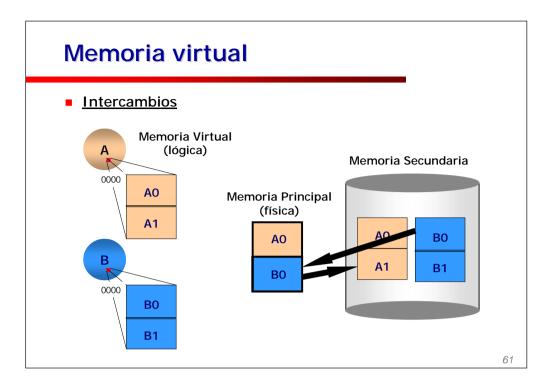
58

Contenidos

- 1.- Conceptos básicos
- 2.- Gestión de memoria
- 3.- Asignación contigua
- 4.- Asignación dispersa

5.- Memoria virtual

- Paginación por demanda
- Algoritmos de reemplazo
- Asignación de marcos
- Hiperpaginación


Memoria virtual

Concepto de memoria virtual

(9.1)

- Paginación por demanda.
- Segmentación por demanda.
- Ventajas
 - Aumentar el grado de multiprogramación
 - Aumentar el tamaño de los programas
 - Ahorro de memoria.
- Inconvenientes
 - Reducir el rendimiento del sistema si no se diseña y sintoniza adecuadamente.
 - Mayor complejidad.

TEMA 3.- Gestión de la memoria 59

- 1.- Conceptos básicos
- 2.- Gestión de memoria
- 3.- Asignación contigua
- 4.- Asignación dispersa

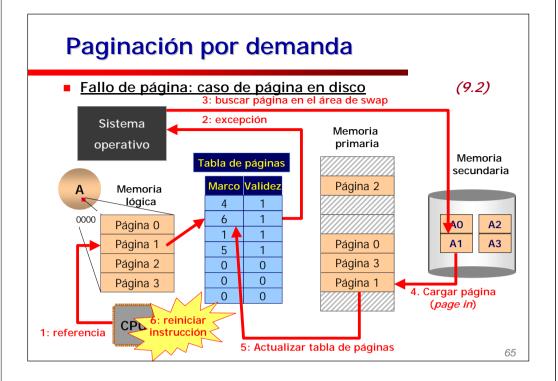
5.- Memoria virtual

- Paginación por demanda
- Algoritmos de reemplazo
- Asignación de marcos
- Hiperpaginación

TEMA 3.- Gestión de la memoria

Paginación por demanda

Concepto de paginación por demanda


(9.2)

- Paginación + Intercambios entre memoria principal y secundaria (swapping).
- Descriptores de página
 - Bit de validez
 - Bit de referencia
 - Bit de modificación
 - Problema con las páginas compartidas.

Paginación por demanda

- Fallos de página
 - Definición:
 - Se produce cuando referenciamos una página que tiene su bit de validez igual a 0
 - Manejo de fallos de página
 - Página en disco.
 - Se carga la página en un marco
 - Error de acceso.
 - Se aborta el proceso
 - El proceso "crece" y reclama nuevas páginas.
 - Si el SO lo permite, se le asigna una nueva página al proceso, se valida y se le asigna un marco.

62

Paginación por demanda

- Algoritmo de fallo de página: caso de página en disco (9.2)
 - Encontrar la página demandada en disco.
 - Encontrar un marco libre:
 - Si existe un marco libre, utilizarlo.
 - Si no, utilizar un algoritmo de reemplazo de páginas.
 - Si el bit de modificación es 1, escribir la víctima en disco (page out).
 - Actualizar la tabla de páginas, invalidando la víctima, y la tabla de marcos.
 - Leer la página demandada del disco (page in) y ubicarla en el marco libre, actualizando la tabla de páginas y la tabla de marcos libres.
 - Transferir control al proceso de usuario, <u>reejecutando la instrucción</u> gue provocó el fallo de página.

66

Paginación por demanda

Reemplazo de páginas

(9.4)

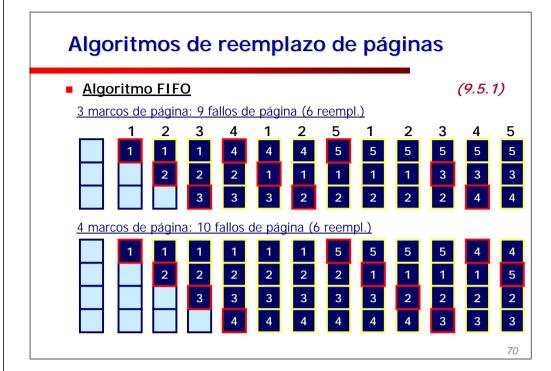
- Si la memoria principal está completamente ocupada y se produce un fallo de página:
 - Una página ubicada en memoria principal, denominada víctima, debe dejar su marco a la página demandada.
 - Si el bit de modificación es 1 hay que salvar la víctima a disco (page out)
 - Leer la página demandada sobre el marco de la víctima (page in)
- Existen diversos algoritmos para seleccionar la víctima.

Contenidos

- 1.- Conceptos básicos
- 2.- Gestión de memoria
- 3.- Asignación contigua
- 4.- Asignación dispersa

5.- Memoria virtual

- Paginación por demanda
- Algoritmos de reemplazo
- Asignación de marcos
- Hiperpaginación


TEMA 3.- Gestión de la memoria 68

Algoritmos de reemplazo de páginas

Serie de referencias

- (9.5)
- Algoritmos de sustitución de páginas
 - Algoritmo FIFO
 - Algoritmo óptimo
 - Algoritmo LRU
 - Algoritmo de aproximación al LRU
 - Segunda oportunidad

69

Algoritmos de reemplazo de páginas

Algoritmo FIFO

- Filosofía
 - La víctima será aquella página que hace mas tiempo que ha sido CARGADA en memoria.
- Ventajas
 - Muy simple.
- Inconvenientes
 - Presenta la anomalía de Belady

Algoritmos de reemplazo de páginas

- Algoritmo óptimo
 - Filosofía
 - La víctima es aquella página que se tardará más en utilizar.
 - Ventajas
 - Ofrece un número de fallos mínimo.
 - Inconvenientes
 - Implementación imposible.

Algoritmos de reemplazo de páginas

Algoritmos de pila

(9.5.1)

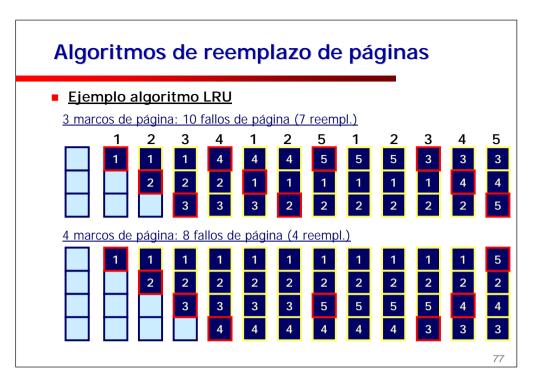
- Definición
 - Garantiza que un conjunto de páginas mantenido con N marcos es un subconjunto del que se mantiene con N+1 marcos
- Propiedad
 - Si un algoritmo es de pila NUNCA presenta la anomalía de Belady

73

74

Algoritmos de reemplazo de páginas

- Algoritmos de pila
 - FIFO no es un algoritmo de pila



Algoritmos de reemplazo de páginas

Algoritmo LRU

(9.5.3)

- Filosofía:
 - La víctima será aquella página que hace más tiempo que ha sido REFERENCIADA.
- Propiedades:
 - Es un algoritmo de pila.

Algoritmos de reemplazo de páginas

■ Implementaciones del algoritmo LRU

(9.5.3)

- Contadores
- Cola
- Ventajas
 - Buena aproximación al óptimo
- Inconvenientes
 - Difícil de implementar
 - Solución:
 - Utilizar aproximaciones al algoritmo.

78

Algoritmos de reemplazo de páginas • Alg. segunda oportunidad o víctima 1 Bit de referencia

Contenidos

- 1.- Conceptos básicos
- 2.- Gestión de memoria
- 3.- Asignación contigua
- 4.- Asignación dispersa

5.- Memoria virtual

- Paginación por demanda
- Algoritmos de reemplazo
- Asignación de marcos
 - Hiperpaginación

TEMA 3.- Gestión de la memoria

Asignación de marcos

- Problema de asignación de marcos
 - Lista de marcos libres
 - Reparto de marcos entre los procesos y el SO
- Algoritmos de asignación de marcos
 - Asignación equitativa
 - Asignación proporcional
 - Asignación prioritaria
- Ambito de las políticas de reemplazo
 - Reemplazo local
 - Reemplazo global

83

Contenidos

- 1.- Conceptos básicos
- 2.- Gestión de memoria
- 3.- Asignación contigua
- 4.- Asignación dispersa

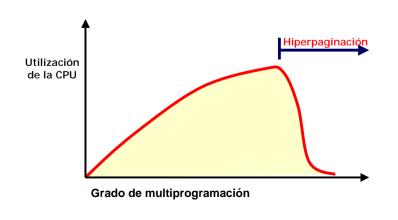
5.- Memoria virtual

- Paginación por demanda
- Algoritmos de reemplazo
- Asignación de marcos

Hiperpaginación

81

TEMA 3.- Gestión de la memoria


82

Hiperpaginación (thrashing)

■ El problema de la hiperpaginación

(9.7)

Causa de la hiperpaginación

Hiperpaginación (thrashing)

Principio de localidad de referencia

(9.7.1)

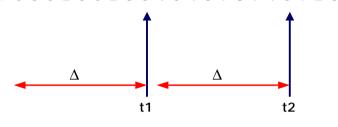
– Localidad:

Conjunto de páginas que un proceso utiliza conjuntamente.

- Principio de localidad de referencia.
- Hiperpaginación = Σ (tamaños de localidad) > (tamaño memoria total)

Hiperpaginación (thrashing)

■ Modelo del área activa


(9.7.2)

- Asume el principio de localidad de referencia.
- Determinar el número de páginas que un proceso que deben tener en memoria para obtener un buen rendimiento y evitar la hiperpaginación.
- **Área activa**: conjunto de páginas accedidas en las últimas Δ referencias.
- Ventana de área activa Δ Es un número fijo de referencias.

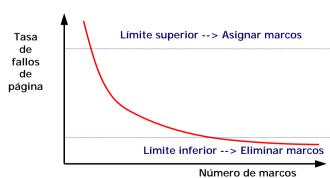
Hiperpaginación (thrashing)

■ Modelo del área activa

... 5 3 5 2 3 5 2 3 5 4 5 4 5 9 8 9 4 6 9 2 3 9 2

$$AA(t1) = \{2,3,5\}$$

$$AA(t2) = \{4,5,6,8,9\}$$


86

85

Hiperpaginación (thrashing)

Control de la tasa de fallos de página

(9.7.3)

