JADE TUTORIAL

APPLICATION-DEFINED CONTENT
LANGUAGES AND ONTOLOGIES

USAGE RESTRICTED ACCORDING TO LICENSE AGREEMENT.

last update: 30-June-2002. JADE 2.6
Authors. Giovanni Caire (TILAB, formerly CSELT)
Copyright (C) 2000 CSELT Sp.A.

Copyright (C) 2001 TiLab Sp.A.
Copyright (C) 2002 TlLab S.p.A.

JADE - Java Agent DEvelopment Framework is aframework to develop multi-agent systems in compliance with the FIPA
specifications. JADE successfully passed the 1% FIPA interoperability test in Seoul (Jan. 99) and the 2" FIPA interoperability test
inLondon (Apr. 01).

Copyright (C) 2000 CSELT Sp.A. (C) 2001 TILab S.p.A. (C) 2002 TILab S.p.A.

Thislibrary is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, version 2.1 of the License.

Thislibrary is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY: ; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Seethe GNU Lesser General Public License for more
details.

Y ou should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

1 RATIONALE
2 MAIN ELEMENTS
3 THE CONTENT REFERENCE MODEL
4 USING THE JADE CONTENT LANGUAGE AND ONTOLOGY SUPPORT. BASIC
FEATURES
4.1 TheMusc Shop example
4.2 Defining an Ontology
4.3 Developing ontological Java classes
4.4 Selecting a content language
4.5 Registering content languages and ontologies to an agent
4.6 Creating and manipulating content expressions as Java objects
5 USING THE JADE CONTENT LANGUAGE AND ONTOLOGY SUPPORT.
ADVANCED FEATURES
5.1 Combining ontologies

51.1 The Vocabulary interface pattern
5.2 Working with abstract descriptors
5.3 Theconversion pipeline
5.4 Content language operators

54.1 Using the SL operators
55 Creating queries
5.6 Adding semantic constraints. Facets
5.7 Disabling semantic checksto improve performances
5.8 User-defined content languages
5.9 I ntrospectors

6

TABLE OF CONTENTS

USING PROTEGE TO CRE ATE JADE ONTOLOGIES

7
8
8

11

13

13

14

15

15
17

17

19

21

24
24

25

25

7

MIGRATING FROM THE OLD SUPPORT TO THE NEW ONE

25

APPLICATION-DEFINED CONTENT
LANGUAGES AND ONTOLOGIES

This section describes the new content languages and ontologies support provided by JADE since
verson 2.5 and included in the] ade. cont ent package. Former versions of JADE aready
included an “old” support for content languagesand ontologies (scattered around the

j ade. onto,jade. | ang. sl andj ade. cor e packages) that is till available for backward
compatibility. With respect to the old one, this new support provides a number of advanced
features, such as the possibility of creating queries and using content language operators, that can
be extremely important in complex applications.

Asusua in JADE, the approach is “pay as you go”: using the basic features (covered in 4), that are
equivalent to the dd support, is as ssimple as (and very similar to) using the old support. Using the
advanced features (covered in 5) requires the developer to know more about the internal operations
of this new content languages and ontologies support. Finaly section 7 describes how to modify an
application written for the old support in order to make it use the new one.

1 RATIONALE

When an agent A communicates with another agent B, a certain amount of information | is
transferred from A to B by means of an ACL message. Inside the ACL message, | is represented as
a content expression consistent with a proper content language (e.g. SL) and encoded in a proper
format (e.g. string). Both A and B have their own (possibly different) way of internally
representing . Taking into account that the way an agent internally represents a piece information
must alow an easy handling of that piece of information, it is quite clear that the representation
used in an ACL content expression is not suitable for the inside of an agent.

For example the information that there is a person whose name is Giovanni and who is 33 years
old in an ACL content expression could be represented as the string

(Person :name G ovanni :age 33)

Storing this information inside an agent smply as a string variable is not suitable to handle the
information as e.g. getting the age of Giovanni would require each time to parse the string.
Considering software agents written in Java (as JADE agents are), information can conveniently be
represented inside an agent as Java objects. For example representing the above information about
Giovanni as an instance (a Java object) of an application-specific class

cl ass Person {

String nane;
i nt age;

public String getNanme() {return nane; }
public void setName(String n) {nane = n;
public int getAge() {return age; }
public void setAge(int a) {age = a; }

}

}

initialized with

nane = “G ovanni”;

age = 33;

would allow to handle it very easily.

It is clear however that, if on the one hand information handling inside an agent is eased, on the

other hand each time agent A sends a piece of information | to agent B,

1) A needsto convert hisinternal representation of | into the corresponding ACL content
expression representation and B needs to perform the opposite conversion.

2) Moreover B should also perform a number of semantic checks to verify that | is a meaningful*
piece of information, i.e. that it complies with the rules (for instance that the age of Giovanni is
actually an integer value) of the ontology by means of which both A and B ascribe a proper
meaning to |.

The support for content languages and ontologies provided by JADE is designed to automatically

perform all the above conversion and check operations as depicted in Figure 1, thus allowing

developers manipulating information within their agents as Java objects (as described above)
without the need of any extrawork.

Content dot of an I nside of an agent

ACLMessage
JADE support
Information for content Information
represented as a ts)trlng or _, languegesand |, | epresented as Java objects
a sequence of bytes ontologies :
(easy to transfen) <— (easy to manipulate)

Figure 1The conversion performed by the JADE support for content languages and
ontologies

2 MAIN ELEMENTS

The conversion and check operations described in 1 are carried out by a content manager object
(i.e. an instance of the Cont ent Manager class included in thej ade. cont ent package). Each
JADE agent embeds a content manager accessible through the get Cont ent Manager () method of
the Agent class. The Cont ent Manager class provides all the methods to transform Java objects
into strings (or sequences of bytes) and to insert them in the content slot of ACLMessages and vice-
versa

The content manager provides a convenient interfaces to access the conversion functionality, but
actually just delegates the conversion and check operations to an ontology (i.e. an instance of the
Ont ol ogy classincluded inthej ade. cont ent. ont o package) and acontent language codec
(i.e. an instance of the Codec interface included in the j ade. content . | ang package). More
specificaly the ontology validates the information to be converted from the semantic point of view

1 Not necessarily true. If | say that “the age of Giovanni is 34", this information is meaningful (a meaningless information would be
for example that “the age of Giovanni isdog”), but can be false as maybe Giovanni is 33.

while the codec performs the trandation into strings (or sequences of bytes) according to the
syntactic rules of the related content language. These operations are described in more details in
5.3 but the user does not need to care about them unless he needs to use some advanced features
such as performing queries.

3 THE CONTENT REFERENCE MODEL

In order for JADE to perform the proper semantic checks on a given content expression it is
necessary to classify all possible elements in the domain of discourse (i.e. e ements that can appear
within a valid sentence sent by an agent as the content of an ACL message) according to their
generic semantic characteristics. This classification is derived from the ACL language defined in
FIPA that requires the content of each ACLMessage to have a proper semantics according to the
performative of the ACLMessage. More in details at the first level we distinguish between
predicates and terms.

Predicates are expressions that say something about the status of the world and can bet r ue or
fal se eg.

(Vbrks-?or (Person :name John) (Conpany :nanme TILAB))

stating that “the person John works for the company TILAB”.

Predicates can be meaningfully used for instance as the content of an INFORM or QUERY-IF
message, while would make no sense if used as the content of a REQUEST message.

Terms are expressions identifying entities (abstract or concrete) that “exist” in the world and that
agents talk and reason about. They are further classified into:

Concepts i.e. expressions that indicate entities with a complex structure that can be defined in

terms of dotseg.
(Person :name John :age 33)

Concepts typically make no sense if used directly as the content of an ACL message. | general they

are referenced inside predicates and other concepts such asin
(Book :title “The Lord of the rings” :author (Person :name “J.R R Tolkjien"))

Agent actions i.e. specia concepts that indicate actions that can be performed by some agents e.g.
(Sell (Book :title “The Lord of the rings”) (Person :nane John))

It is useful to treat agent actions separately since, unlike “normal” concepts, they are meaningful
contents of certain types of ACLMessage such as REQUEST. Communicative acts (i.e. ACL
messages) are themselves agent actions.

Primitivesi.e. expressions that indicate atomic entities such as strings and integers.

Aggregatesi.e. expressions indicating entities that are groups of other entities e.g.
(sequence (Person :nane John) (Person :nanme Bill))

I dentifying Referential Expressions (IRE) i.e. expressions that identify the entity (or entities) for
which a given predicate is true e.g.
(all ?x (Works-for ?x (Conpany :nane TILAB))

identifying “all the elements x for which the predicate (Wor ks-for x (Conpany :nane Tl LAB))
istrue, i.e al the persons that works for the company TILAB).

These expressions are typically used in queries (e.g. as the content of a QUERY _REF) message)
and requires variables.

Variablesi.e. expressions (typically used in queries) that indicate a generic element not known a-
priori.

A fully expressive content language should be able to represent and distinguish between all the
above types of element. An ontology for a given domain is a set of schemas defining the structure

of the predicates, agent actions and concepts (basically their names and their sots) that are
pertinent to that domain.

The final Content Reference Moddl (depicted in Figure 2) includes two more types of element that
are introduced considering that only predicates, agent actions, IREs and lists of elements of these

three types® (ContentElementL ist) are meaningful content of at least one ACL message. They all
inherit from the ContentElement super-type.

Can be used as the
content of an ACL
1~ 7

Element
message
7 A N
/ " \
) - <L
N - —
ContentElement N Indicated entities
N (abstract or concrete)
\
K -1 \
! A\ L\E/\/\ AN \\ //
TN =% N /
AN . \ /
| NN ContentElementList N /
/
| \\ AN
Predicate \\ N Term
\.
\ \
7\ \ AN 2 B W R
/o \ N S UNAN YAV
/ \ \ \ v / o= v \ N
A \ N A \ ~
- | ~
ya \ \ \ ~ / | \ o
______ N \ N -~ / I AN N
Canbetrue =) | \ — :
or false I \ \ IRE Concept Primitive Aggregate Variable
__________ \\ \\\ »
\ N A
\ N /// i
X |
\ 7N |
e N |
\\ - N I
\ e AN |
\ - N\ i
i AN
An ontology deals with these AgentAction
types of element

Figure 2The Content Reference Model

4 USING THE JADE CONTENT LANGUAGE AND ONTO LOGY SUPPORT. BASIC FEATURES

This section describes the basic features of the new JADE content language and ontology support
included in the j ade. cont ent package. These features are typically sufficient in alot of
normal cases and, for users already familiar with JADE, they exactly correspond to those provided
by the previous JADE support. Thej ade. cont ent package however provides a number of
advanced features, such as the possibility of creating queries, that are important for complex
applications and that were not available in the old support. These advanced features are covered in
5.

2 E.g. The content of a PROPOSE message is an agent action + a predicate indicating the conditions that will become t r ue if the
agent action is performed.

Exploiting the JADE content language and ontology support included in the j ade. cont ent
package to make agents talk and reason about “things and facts’ related to a given domain goes
through the following steps.

1) Defining an ontology including the schemas for the types of predicate, agent action and
concept that are pertinent to the addressed domain. Thisis discussed in 4.2

2) Developing proper Java classes for all types of predicate, agent action and concept in the
ontology. Thisis discussed in 4.3

3) Selecting a suitable content language among those directly supported by JADE. Thisis
discussed in 4.4. JADE can be easily extended to support new user-defined content languages
(see 5.8), but in the great majority of the cases the user does not need to define his own content
language.

4) Registering the defined ontology and the selected content language to the agent. Thisis
discussed in 4.5.

5 Creating and handling content expression as Java objects that are instances of the classes
developed in step 2 and let JADE trandate these Java objects to/from strings or sequences of
bytes that fit the cont ent dot of ACLMessages. Thisisdiscussed in 4.6

The above steps are illustrated by means of a smple example described in 4.1

4.1 The Music Shop example

This example considers a Seller agent managing a simple electronic music shop where two types
of item (i.e. CDs and musical books) are available for sale. Each item has a serial number. Each
CD has a name and a number of tracks each one has atitle and a duration. Each musical book has a
title. The Seller agent owns a number of items and can sell them to other Buyer agents.

In the example a Buyer agent will ask the Sdller agent if he owns a given CD and, if thisis the
case, he will request him to sell that CD.

4.2 Defining an Ontology

An ontology in JADE is an instance of thej ade. cont ent . ont 0. Ont ol ogy class to which the
schemas defining the structure of the types of predicates, agent actions and concepts relevant to the
addressed domain have been added. These schemas are instances of the Pr edi cat eSchens,
Agent Act i onSchema and Concept Schema classes included in thej ade. cont ent . schema package.
These classes have methods by means of which it is possible to declare the dots that defines the
structure of each type of predicate, agent action and concept.
As an ontology is basically a collection of schemas that typically does not evolve during an agent
lifetime, it is a good practice to declare the ontology as a singleton object and to define an ad-hoc
class (that extends j ade. cont ent . ont 0. Ont ol ogy) with a static method to access this singleton
object. This alows sharing the same ontology object (and al the included schemas) among
different agents in the same JVM.
In the music shop example we will deal with four concepts (Item, CD, Track and Book), one
predicate (Owns) and one agent action (Sell). Besides them we will have to dea with the concept
of AID. The latter however does not need to be defined as each ontology in JADE normally
extends a basic ontology (represented as a singleton object of the
j ade. cont ent . ont 0. Basi cOnt ol ogy class) that includes the schemas for

the primitive types (STRI NG, | NTEGER, FLOAT...)

the aggregate type

some generic (i.e. not belonging to any specific domain) predicates, agent actions and concepts
among which the AID concept identifying an agent.
In order to declare that the ontology ol extends the ontology 02 (i.e. all predicates, agent actions
and conceptsincluded in 02 are also included in 01) it is sufficient to pass 02 as a parameter
when 01 is constructed.
Taking into account all the above issues, the ontology for the music shop domain can be defined as

package nusi cShopOnt ol ogy;

i nport jade.content.onto.*;
i mport jade.content.schenm. *;

public class Misi cShopOnt ol ogy extends Ontol ogy {
/1 The nanme identifying this ontol ogy
public static final String ONTOLOGY_NAME = "Musi c- shop-ontol ogy";

/| VOCABULARY
public static final String ITEM= "Itent;
public static final String | TEM SERI AL = "seri al -nunber";

public static final String CD = "CD';
public static final String CD_NAME = "nane";
public static final String CD_TRACKS = "tracks";

public static final String TRACK = "Track";
public static final String TRACK TITLE = "title";
public static final String TRACK DURATI ON = "duration";

public static final String BOOK = "Book";
public static final String BOOK TITLE = "title";

public static final String OANS = "Omns";
public static final String OMWNS_OAMER = "owner";
public static final String OAWNS_ITEM = "itent;

public static final String SELL = "Sell";
public static final String SELL_BUYER = "buyer";
public static final String SELL_ITEM = "itent,;

/'l The singleton instance of this ontol ogy
private static Ontol ogy thelnstance = new Misi cShopOnt ol ogy();

/1 This is the nethod to access the singleton nusic shop ontol ogy object
public static Ontol ogy getlnstance() {
return thel nstance;

}

/1l Private constructor

private Misi cShopOntol ogy() {
/'l The nusic shop ontol ogy extends the basic ontol ogy
super (ONTOLOGY_NAME, Basi cOntol ogy. getlnstance())

try {
add(new Concept Schena(l TEM, |tem cl ass);
add(new Concept Schema(CD), CD. cl ass);

add(new Concept Schema(TRACK), Track. cl ass);
add(new Concept Schenma(BOOK), Book. cl ass);
add(new Predi cateSchema(OANS), Oamns. cl ass);
add(new Agent Acti onSchema(SELL), Sell. cl ass);

/'l Structure of the schema for the Item concept
Concept Schema cs = (Concept Scherma) get Schema(| TEM ;
cs.add(| TEM SERI AL, (PrimtiveSchem) getSchema(Basi cOntol ogy. | NTEGER),
bj ect Schema. OPTI ONAL) ; // The seri al -nunber slot is optional and
/1l allowed val ues are integers.

/'l Structure of the schema for the CD concept
cs = (Concept Schenn) get Schena(CD);
cs. addSuper Schema((Concept Schemn) get Schema(l TEM)) ;
cs.add(CD_NAME, (PrimitiveSchemn) getSchema(Basi cOntol ogy. STRING));
cs. add(CD_TRACKS, (ConceptSchema) get Schema(TRACK), 1,
bj ect Schema. UNLI M TED); // The tracks slot has cardinality > 1

/'l Structure of the schema for the Track concept
cs = (Concept Scherma) get Schema(TRACK) ;
cs. add(TRACK_TI TLE, (PrimtiveSchem) getSchema(Basi cOntol ogy. STRING));
cs. add(TRACK_DURATI ON, (PrinitiveSchenm)
get Schema(Basi cOnt ol ogy. | NTEGER), Obj ect Schena. OPTI ONAL) ;

[/l Structure of the schema for the Book concept

cs = (Concept Schema) get Schema(BOXK) ;

cs. addSuper Schema((Concept Schemn) get Schema(l TEM)) ;

cs.add(BOOK_TI TLE, (PrinmitiveSchena) getSchema(Basi cOntol ogy. STRING));

[/l Structure of the schema for the Owms predicate

Predi cat eSchema ps = (Predi cat eSchema) get Schema(OMS) ;

ps. add(OANS_OWNER, (Concept Schema) get Schema(Basi cOntol ogy. AID));
ps. add(OANS_I| TEM (Concept Schema) get Schema(l TEM)) ;

/1 Structure of the schema for the Sell agent action

Agent Acti onScherma as = (Agent Acti onSchenmm) get Schema(SELL) ;

as. add(SELL_I TEM (Concept Schema) get Schema(l TEM));

as. add(SELL_BUYER, (Concept Scherma) get Schema(Basi cOnt ol ogy. AID));

catch (Ontol ogyException oe) {
oe. printStackTrace();
}

}
}

All the xxxschema classes are included in the j ade. cont ent . schema package.

From the above code we can see that
Each schema added to the ontology is associated to a Java class e.g. the schema for the CD
concept is associated to the CD. j ava class. While using the defined ontology, expressions
indicating CDs will be instances of the cD class. These Java classes must have a proper
structure as described in 4.3
Each slot in a schema has aname and atype, i.e. values for that slot must comply with agiven
schema.

A dot can be declared as oPTI ONAL meaning that its value can be nul | . Otherwiseadlot is
considered MANDATORY. If anul | value for a MANDATORY Slot is encountered in the validation of
acontent expression, an Ont ol ogyExcept i on isthrown.

A dot can have a cardinality > 1, i.e. values for that slot are aggregates of elements of a given
type. For example the tracks dot in the schema for the CD concept can contain 1 or more
elements of type Track.

A schema can have a number of super-schemas. This allows defining specialization/extension
relationships among concepts. For example the schema of CD has the schema of Itemasa
super-type meaning that CD is atype of Itemand therefare that each CD instanceisaso an

| teminstance.

4.3 Developing ontological Java classes

As mentioned in 4.2 each schema included in an ontology is associated with a Java class (or
interface). Clearly the structure of these classes must be coherent with the associated schemas.
More in details they must obey the following rules.
1) Implementing a proper interface i.e.
- If theschemaisacConcept Schema the class must implement (directly or indirectly) the
Concept interface.
- If theschemaisaPredi cat eSchema the class must implement (directly or indirectly) the
Pr edi cat e interface.
- If theschemaisaAgent Acti onSchema the class must implement (directly or indirectly)
the Agent Act i on interface.
The above interfaces are part of a hierarchy that follows the content reference model presented in 3
and that isincluded in the j ade. cont ent package
2) Having the proper inheritance relationsii.e.
If S1is a super-schema of S2 then the class C2 associated to schema S2 must extend the class C1
associated to schema S1.
3) Having the proper member fields and accessor methods i.e.
- For each dot in schema S1 with name nnn and type (i.e. whose schemaiis) S2 the class C1

associated to schema S1 must have two accessor methods with the following signature
public void setNnn(C2 c);
public C2 getNnn();

where C2 is the class associated to schema S2. In particular if S2 is a schema defined in the

BasicOntology then

» if S2isthe schemafor STRING - C2isjavalang.String

» if S2 isthe schemafor INTEGER - C2isint, long, java.lang.Integer or
javalang.Long®

» if S2isthe schemafor BOOLEAN - C2 is boolean or java.lang.Boolean

» if S2isthe schemafor FLOAT - C2isfloat, double, javalang.Float or
javalang.Double

» if S2 istheschemafor DATE - C2isjavautil.Date

» if S2isthe schemafor BY TE_SEQUENCE - C2 is byte[]

» if S2istheschemafor AID - C2isjade.core AID

% The user can choose among these options according to his preferences

- For each dot in schema S1 with name nnn, type S2 and cardinality > 1 the class C1

associated to schema S1 nmust have two accessor methods with the following signature
public void setNnn(jade.util.leap.List I);
public jade.util.leap.List getNnn();

To exemplify the above rules the classes associated to the CD concept and to the Owns predicate
in the music shop example are reported below.

/'l Class associated to the CD schenma
package nusi cShopOnt ol ogy;

i mport jade.util.leap.List;

public class CD extends Item{ // Note that the Itemclass (onmtted here)
/'l inmplements Concept
private String nane;
private List tracks;

public String getNanme() {
return nane;

}

public void setNane(String n) {
name = n;

}

public List getTracks() {
return tracks;

public void setTracks(List 1) {
tracks = 1I;
}
}

/'l Class associated to the Owms schema
package nusi cShopOnt ol ogy;

i nport jade.content. Predicate;
i nport jade. core. Al D,

public class Owns inplenents Predicate
private Al D owner;
private Itemitem

public Al D getOwmner() {
return owner;

}

public void setOwer(AIDid) {
owner = id;

}

public Itemgetlten() {
return item

public void setltem(ltemi) {
item=1i;
}

}

4.4 Selecting a content language

Thej ade. cont ent package directly includes codecs for two content languages (the SL language
and the LEAP language) both supporting the content reference model described in 3. A codec for a
content language L is a Java object able to manage (see 5.8 for details) content expressions written
in the L language. In the great mgority of the cases a developer can just adopt one of these two
content languages and use the related codec without any additional effort. This section gives some
hints that can help in choosing which one. If a developer wants his agents to “speak” a different
content language he can define a proper codec for it as described in 5.8,
The SL language is a human-readable string-encoded (i.e. a content expression in SL is a string)
content language and is probably (together with KIF) the mostly diffused content language in the
scientific community dealing with intelligent agents. All examples of content expression in this
documentation are expressed in SL. In general we suggest to adopt this language especialy for
agent based applications that are (or can become) open (i.e. where agents from different devel oper
and running on different platforms must communicate). SL includes a number of useful operators
such aslogical operators (AND, OR, NOT) and modal operators (BELI EF, | NTENTI ON,
UNCERTAI NTY). Refer to 5.4.1 for a description of how to use them. Moreover the property of being
human-readable can be very helpful when debugging and testing an application.
The LEAP language is a non-humantreadable byte-encoded (i.e. a content expression in LEAP is
a sequence of byte) content language that has been defined ad hoc for JADE within the LEAP
project. It is therefore clear that only JADE agents will be able to “speak” the LEAP language.
There are some cases however in which the LEAP language is preferable with respect to SL.

The LEAPCodec classislighter than the SLCodec class. When there are strong memory

limitations the LEAP language is preferable.

Unlike the LEAP language, the SL language does not support sequences of bytes.
Finally the developer should take into account that the SL language deals with agent actions
particularly. All agent actionsin SL must be inserted into the ACTION construct (included in the
Basi cOnt ol ogy and implemented by the j ade. cont ent . ont 0. basi c. Acti on class)
that associates the agent action to the Al D of the agent that is intended to perform the action.

Therefore the expression

(Sel |
(Book :title “The Lord of the rings”)
(agent -identifier :nane Peter)

cannot be used directly as the content of e.g. a REQUEST message even if it corresponds to an
agent action in the Content Reference Model. In fact the SL grammar does not alow it as afirst-

level expression. The following expression must be used instead
(ACTI ON
(agent -i dentifier :nanme John)
(Sell
(Book :title “The Lord of the rings”)
(agent-identifier :nane Peter)

)
)
Where John is the agent that is requested to sell the specified book to agent Peter.

4.5 Registering content languages and ontologies to an agent

Before an agent can actually use the defined ontology and the selected content language, they must
be registered to the content manager of the agent. This operation is typically (but not necessarily)

performed during agent setup (i.e. in the set up() method of the Agent class). The following code
shows this registration in the case of the Seller agent (the Buyer agent looks like the same)
assuming the SL Language is selected.

public class Sell er Agent extends Agent {
private Codec codec = new SLCodec();
private Ontol ogy ontol ogy = Misi cShopOnt ol ogy. getl nstance();

protected void setup() {

get Cont ent Manager () . regi st er Language(codec) ;
get Cont ent Manager () . regi st er Ont ol ogy(ont ol ogy)

}
From now on the content manager will associate the registered Codec and Ont ol ogy Objectsto the

strings returned by their respective get Nane() methods.
Note that, while it is generally a good practice having a singleton Ont ol ogy object, thisis not the
case for Codec objects as synchronization problems can arise during parsing operations.

4.6 Creating and manipulating content expressions as Java objects

Having defined an ontology (and the classes associated to the types of predicate, agent action and

concept it includes), selecteda proper language and registered them to the agent’ s content

manager, creating and manipulating content expressions as Java objects is straightforward. The

code below shows how the Buyer agent asks the Seller agent if he owns “Synchronicity” °.

/'l Prepare the Query-IF nessage

ACLMessage nsg = new ACLMessage(ACLMessage. QUERY_I F);

nmsg. addRecei ver (sellerAID) // sellerAIDis the AID of the Seller agent
nmsg. set Language(codec. get Nanme()) ;

msg. set Ont ol ogy(ont ol ogy. get Name()) ;

/'l Prepare the content. Optional fields are not set
CD cd = new CD();

cd. set Name(“ Synchronicity”);

Li st tracks = new ArraylList();
Track t = new Track();
t.setTitle(“Every breath you take”);
tracks. add(t);

t = new Track();

t.setTitle(“King of pain”);

tracks. add(t);

cd. set Tracks(tracks);

Owms owns = new Oms();
owns. set Owner (sel l er Al D);
owns. setltem cd);

4 This code is likely to be inserted into a proper behaviour implementing a FIPA-Query protocol, but thisis out of the scope of this
documentation

% A very well known CD by The Police

try {
/'l Let JADE convert from Java objects to string

get Cont ent Manager (). fill Content(nmsg, owns);
send(nsg) ;

}
catch (CodecException ce) {
ce.printStackTrace();

}
catch (Ontol ogyException oe) {
oe. printStackTrace();

}

In the fillContent() method the Buyer agent’s content manager gets the proper ont ol ogy and
Codec objects (on the basis of the values of the : ont ol ogy and : | anguage dlots of the
ACLMessage msg) and let them perform the necessary conversion and check operations.
Similarly the Seller agent, receiving the message from the Buyer agent, can handle it as below.

/'l Receive the nessage
MessageTenpl ate m = MessageTenpl at e. and(
MessageTenpl at e. Mat chLanguage(codec. get Nane()),
MessageTenpl at e. Mat chOnt ol ogy(ont ol ogy. get Nane()));
ACLMessage nsg = bl ocki ngRecei ve(nt);

try {
Content El ement ce = null;

if (nmsg.getPerformative() == ACLMessage. QUERY_IF) {
/1 Let JADE convert from String to Java objects
ce = get Cont ent Manager (). extract Cont ent (msg);
if (ce instanceof Omns) {
Owms owns = (Owns) ce;
Itemit = owns.getlten();
/'l Check if | have this item and answer accordingly

}
catch (CodecException ce) {

ce.printStackTrace();
}
catch (Ontol ogyException oe) {
oe.printStackTrace();
}
}

5 USING THE JADE CONTENT LANGUAGE AND ONTOLOGY SUPPORT. ADVANCED
FEATURES

5.1 Combining ontologies

The support for content languages and ontologies included in thej ade. cont ent package
provides an easy way to combine ontologies thus facilitating code re-usage.

In particular it is possible to define that a new ontology extends one or more (previoudy defined)
ontologies by simply specifying the extended ontologies as parameters in the constructor used to
create the new ontology.

For instance in the music shop example we included for simplicity all predicates, agent actions and

concepts in the Musi cShopOnt ol ogy, but as a matter of facts the concept | t em, the predicate
Omns and the agent action Sel | are not strictly related to the music shop domain. They could be
included in another more generic ontology called for instance ECommrer ceOnt ol ogy and the

Musi cShopOnt ol ogy could be defined as extending the ECommrer ceOnt ol ogy by adding the CD,
Book and Tr ack concepts.

Assuming we moved the above mentioned ontological elements in the EConmer ceOnt ol ogy, the
Musi cShopOnt ol ogy would be modified as below

package nusi cShopOnt ol ogy;

i nport jade.content.onto.*;
i nport jade.content.schenn. *;
i nport eConmer ceOnt ol ogy. *;

public class Misi cShopOnt ol ogy extends Ontol ogy {
/1 The nanme identifying this ontol ogy
public static final String ONTOLOGY_NAME = "Musi c- shop-ont ol ogy";

/| VOCABULARY

public static final String CD = "CD";

public static final String CD_NAME = "nane";
public static final String CD TRACKS = "tracks";

public static final String TRACK = "Track";
public static final String TRACK_TITLE = "title";
public static final String TRACK DURATION = "duration";

public static final String BOOK = "Book";
public static final String BOOK_TITLE = "title";

/'l The singleton instance of this ontol ogy
private static Ontol ogy thelnstance = new Misi cShopOnt ol ogy();

/1l This is the nethod to access the singleton nusic shop ontol ogy object
public static Ontol ogy getlnstance() {
return thelnstance;

}

/1l Private constructor

private Misi cShopOntol ogy() {
/'l The nusic shop ontol ogy extends the e-commerce ontol ogy
super (ONTOLOGY_NAME, ECommer ceOnt ol ogy. getl nstance())

try {
add(new Concept Schema(CD), CD. cl ass);
add(new Concept Schema(TRACK), Track. cl ass);
add(new Concept Schema(BOOK), Book. cl ass);

/'l Structure of the schema for the CD concept

cs = (Concept Schenn) get Schenma(CD);
cs. addSuper Schema((Concept Schenma) get Schema(Econmer ceOnt ol ogy. | TEM)) ;
cs.add(CD_NAME, (PrimtiveSchemn) getSchema(BasicOntol ogy. STRING));
cs. add(CD_TRACKS, (ConceptSchema) get Schena(TRACK), 1,
bj ect Schema. UNLIM TED); // The tracks slot has cardinality > 1

It is possible to extend more than one existing ontology by specifying an array of Ont ol ogy
instead of just one Ont ol ogy object. See the javadoc for more details.

5.1.1 The Vocabulary interface pattern

In the above example of course we must take into account that the | TEM constant is defined in
ECommer ceOnt ol ogy. In cases in which we are dealing with large ontologies that are obtained
extending severa previously defined ontologies, keeping track of which ontology a given symbol
is actualy defined in can be quite annoying. To face this problem we suggest the smple design
pattern represented in Figure 3.

<<Interface>> <<Interface>>
Base2Vocabulary <7} Base20ntology Base1Ontology [>>| BaselVocabulary
S Pt A —
A28 \ / b
\ \ / /
N \ / Y
\ \ / /
AN " /
N g ¢ /
N ExtendedOntology //
\ /
\ /
\ /
\ T /
AN i /
\ | /
AN | /
AN \J'/ /7
'

<<Interface>>
ExtendedVocabulary

Figure 3The Vocabulary-interface pattern

Where dl the constants are defined in the Vocabulary interfaces. By organizing things this way each
congtant can be accessed as if it were defined in the ExtendedOntology even if it was actually defined in
one of the base ontologies.

5.2 Working with abstract descriptors

If using Java objects to represent a content expression (as described in 4) is very convenient for
managing the information included in that content expression, there are however some cases where
this can create problems.

- Assuming an ontology includes 1000 elements, we need to deal with 1000 classes. Even if
these classes can be automatically generated (as described in 6), there can be situationsin
which dealing with 1000 classes isin any case a problem (for instance if the agent has to be
deployed on a small device with memory limitations).

If multiple inheritance relationships have to be defined between concepts in an ontology (this
feature is supported by simply calling several times the addSuper Schena() method), the

Java classes representing these concepts must be interfaces as Java does not support multiple
inheritance.

In order to create queriesit is necessary to specify variables such asin
QUERY_REF (Al ?x (Owns (agent-identifier :nane Seller) ?x)

Such a content expression can't be translated into a Java object as an object representing a
variable cannot be assigned where an | t emis required.
For these reasons JADE provides another (less convenient, but more general) way of representing
content expressions: each element can be represented as an abstract descriptor that includes
atype-nameindicating the actual type of the element
anumber of named dots holding the attributes of the element
Thisisto say that e.g. the concept (Person : nane G ovanni :age 33) can be also represented
as an instance of the AbsConcept class (an abstract descriptor representing a concept) where the
type- name is Set to “Per son”, the sl ot named “name” is set to “G ovanni " ° and the sl ot named
“age” is set to 33.
At the end of the day there is an abstract descriptor class for each type of element in the content
reference model presented in 3 (AbsPredi cate, AbsAgent Action, AbsConcept)andall
predicates are represented as instances of AbsPr edi cat e, all agent actions are represented as
instances of AbsAgent Acti on and So on.
All abstract descriptor classes are included in the j ade. cont ent . abs package.
Note that primitive values are represented as abstract descriptors too, i.e. as instances of the
AbsPrinitive class.
As an example, when using abstract descriptors, the code presented in 4.6to ask the Seller agent if
he owns a given CD, would look like (refer to the javadoc for details about the methods provided
by the abstract descriptor classes):

/'l Prepare the Query-IF nessage

ACLMessage msg = new ACLMessage(ACLMessage. QUERY_I F);

neg. addRecei ver (sellerAID) // sellerAIDis the AID of the Seller agent
neg. set Language(codec. get Nanme()) ;

nmsg. set Ont ol ogy(ont ol ogy. get Name()) ;

/'l Prepare the content. Optional fields are not set
AbsConcept absCd = new AbsConcept (Musi cShopOnt ol ogy. CD) ;
absCd. set (Musi cShopOnt ol ogy. CD_NAME, “Synchronicity”);

AbsAggregat e absTracks = new AbsAggregate (Basi cOntol ogy. SEQUENCE) ;
AbsConcept absT = new AbsConcept (Muisi cShopOnt ol ogy. TRACK) ;

absT. set (Musi cShopOnt ol ogy. TRACK _TI TLE, “Every breath you take”);
absTr acks. add(absT);

absT = new AbsConcept (MisicShopOnt ol ogy. TRACK) ;
absT. set (Musi cShopOnt ol ogy. TRACK _TI TLE, “King of pain”);
absTracks. add(absT);

absCd. set (Musi cShopOnt ol ogy. CD_TRACKS, absTracks);

try {

® More in details it is set to an AbsPrimitive (an abstract descriptor representing a primitive value) representing the string
“Giovanni”

/'l Use the basic ontology to get an abstract descriptor of the Seller AID
AbsConcept absSell er = ontol ogy. fronmCbject(sellerAlD);

AbsPredi cate absOwmns = new AbsPredi cat e(Misi cShopOnt ol ogy. OANS) ;
absOwns. set (Musi cShopOnt ol ogy. OANS_OANNER, absSel | er);

absOmns. set (Musi cShopOnt ol ogy. OANS_| TEM absCd) ;

/1 Let JADE convert from Abstract descriptor to string

get Cont ent Manager (). fill Content(nmsg, owns);

send(nsg) ;

}
catch (CodecException ce) {
ce.printStackTrace();

catch (Ontol ogyException oe) {
oe. printStackTrace();

}

It should be noted that
We use the ontology to get an abstract descriptor of the seller AID. Thisis explainedin 5.3
In this case we are using an overloaded version of thefi | | Cont ent () method that takes an
AbsCont ent El enent (instead of a Cont ent El enent) as parameter.
In genera the developer can work with both user defined java classes and abstract descriptors
depending on the situation. For example java objects can be used normally (as they are more
convenient) and abstract descriptors can be used only when dealing with queries (that can’t be
represented as java objects).
The Ont ol ogy class provides an overloaded version of theadd() method that allows adding a
schema to the ontology without specifying any Java class associated to this schema. Clearly if
the user adds a schema using this method he will never be able to work with Java objects when
dealing with content expr essions that refer to that schema.

5.3 The conversion pipeline

Even if the user only works with Java objects, JADE uses the abstract descriptor classes when
trandating content expressions. More in detailswhen thefi | | Cont ent () / ext r act Cont ent ()
methods of the Cont ent Manager classare called
The Ccodec object (associated to the language indicated in the : | anguage dot of the message
whose content has to be trandated) converts a string (or a sequence of byte) into/from an
AbsCont ent El enent .
The AbsCont ent El ement is validated against its schema.
The Ont ol ogy object (associated to the ontology indicated in the : ont ol ogy dot of the
message whose content has to be translated) converts the AbsCont ent El enent into/from a
Java object of a class implementing the Cont ent El enent interface.
Figure 4 graphically represents this conversion pipeline.

content of the ACL | ContentManager { Agentinteral
Message i i representation

' i

H 1

. Content i

i Language Ontology |

| Codec :

:)

H 1

H 1

i H
| Parser B Paser i >

H]

e i

H 1

| | |
String/byte]] ! AbsContentElement ! ContentElement

']

H 1

i 1

')

i i

< L Encoder Encoder .

| |

')

i |

i |

Figure 4The conversion pipeline

Thet oObj ect () and frombj ect () methods of the Ont ol ogy class are used to perform the
trandation between abstract descriptors and java objects.

5.4 Content language operators

In general a content language, besides defining a proper syntax for content expressions, defines a
number of operators such as the logical connectors AND and OR. Each operator in a content
language, like elements in an ontology, can be defined by means of a schema that specifies the
structure of all the expressions based on that operator. This schema will be a Pr edi cat eSchema, an
Agent Act i onSchema and so on according to the semantics of the operator. For instance the AND
operator will be defined by a Pr edi cat eSchema (Since an expression based on the AND operator is
alogica expression that can be true or false) whose type-name is “AND” and that has two dots:

I ef t whose values must be Pr edi cat e objects

ri ght whose values must be Pr edi cat e objects

The operators in a content language therefore form an ontology that can be defined in JADE

exactly as user defined ontologies described in 4.2 This ontology can be accessed through the

get | nner Ont ol ogy() method of the Codec class. It should be noticed however that:

- Unlike user defined ontologies whose elements are in general domain specific, the ontology of
the operators of a content language in general only includes domain independent element.
While user defined ontologies only include schemas of predicates, concepts and agent actions,
the ontology of the operators of a content language can also include schemas of other typesin
the content reference model. For example the sequence operator of the SL language if defined
by an Aggr eat eSchema.

5.4.1 Usingthe SL operators

The SL language supports a rich set of useful operators ranging from logical operators (AND, OR,
NOT) to modal operators (B, I, U, PG) and action operators (ACTI ON, ; ,|). Asmentioned in 5.4,

these operators are defined by proper schemas. Since there are quite alot of operatorsin SL,
however, we decided not to provide a Java class for each of them. In particular only the operators

that are supported by the SLO language (agent -i dentifier, set, sequence, action, done,
resul t,=) have a class associated to them. Their schemas and the related Java classes are defined
directly in the Basi cOnt ol ogy as these operators are necessary to create expressions that are
referenced in the definition of the semantics of ACL.

In order to handle expressions that make use of the other operators it is necessary to use the
abstract descriptors as described in 5.2 All operator names are available as constants defined in the
j ade. content .| ang. sl.SLVocabul ary interface.

As an example let’s go back to the music shop case and let’s assume that the seller agent does not
own “Synchronicity”. In order to inform the buyer agent about that, the seller can use the NOT
operator. The code to do that will look like that highlighted in bold.

/'l Receive the nessage
MessageTenpl ate nmt = MessageTenpl at e. and(
MessageTenpl at e. Mat chLanguage(codec. get Nane()),
MessageTenpl at e. Mat chOnt ol ogy(ont ol ogy. get Name()));
ACLMessage nsg = bl ocki ngRecei ve(nt);

try {
Content El enent ce = nul | ;

if (nmsg.getPerformative() == ACLMessage. QUERY_IF) {
/1 Let JADE convert from String to Java objects
ce = get Cont ent Manager (). extract Cont ent (msg) ;
if (ce instanceof Oms) {
Oms owns = (Owns) ce;
Itemit = owns.getlten();
if (I don't own the itemit) {
AbsPredi cate not = new AbsPredi cat e(SLVocabul ary. NOT) ;
not . set (SLVocabul ary. NOT_WHAT, ontol ogy. fronObj ect (owns));
ACLMessage reply = nsg. createReply();
reply. set Performati ve(ACLMessage. | NFORM ;
get Cont ent Manager ().fill Content(reply, not);
send(reply);

catch (CodecException ce) {
ce.printStackTrace();

}

catch (Ontol ogyException oe) {
oe. printStackTrace();

}

}

5.5 Creating queries

As aready mentioned, working with abstract descriptors is necessary when manipulating queries.
In particular two abstract descriptors classes are used when dealing with queries:
Abs| RE - an abstract descriptor representing an |dentifying Referential Expression (IRE)
AbsVari abl e - an abstract descriptor representing a Variable
An IRE aways includes a variable and a predicate and therefore the Abs| RE class has proper
methods to access the AbsVari abl e and the AbsPr edi cat e representing the included variable and
predicate.
In order to exemplify the usage of Absl RE and AbsVar i abl e to create queries let’s add now to the
ECommer ceOnt ol ogy the predicate Cost s that relatesan | t emwith an i nt eger representing the
price of that item. We also assume to have organized things according to the Vocabulary-interface
pattern described in 5.1.1 The definition of this new predicate looks like:
Ecommrer ceVocabul ary file

public static final String COSTS = "Costs";
public static final String COSTS_ITEM = "itent;
public static final String COSTS_PRICE = "price";

EConmmer ceOnt ol ogy file

/'l Private constructor

private EConmerceOntol ogy() {
/'l The e-comrerce ontol ogy extends the basic ontol ogy
super (ONTOLOGY_NAME, Basi cOnt ol ogy. getl nstance())

try {
add(new Concept Schema(I TEM, |tem cl ass);

add(new Predi cat eSchema(OANS), Oans. cl ass);
add(new Predi cat eSchema(COSTS), Costs. cl ass);
add(new Agent Acti onSchema(SELL), Sell. cl ass);

/1l Structure of the schena for the Costs predicate

Predi cat eSchema ps = (PredicateSchem) get Schema(COSTS);

ps. add(COSTS_I TEM (Concept Schema) get Schema(| TEM);

ps. add(COSTS PRI CE, (PrimtiveSchem) getSchema(Basi cOntol ogy. | NTEGER)) ;

Then we modify the Buyer agent so that it asks the Seller agent for the price of the CD heis
interested in before trying to buy it. The code to create the query will look like:

/'l Prepare the Query-REF nessage

ACLMessage msg = new ACLMessage(ACLMessage. QUERY_REF) ;

nmsg. addRecei ver(sellerAID) // sellerAIDis the AID of the Seller agent
neg. set Language(codec. get Nanme()) ;

nsg. set Ont ol ogy(ont ol ogy. get Name()) ;

/'l Prepare the content.

try {
AbsConcept absCd = ontol ogy. frombbject(cd);

AbsVariabl e x = new AbsVari abl e(“x”, Basi cOntol ogy. | NTEGER) ;

AbsPredi cat e absCosts = new AbsPredi cat e(Musi cShopOnt ol ogy. COSTS) ;

absCost s. set (Musi cShopOnt ol ogy. COSTS | TEM absCd) ;
absCost s. set (Musi cShopOnt ol ogy. COSTS_PRI CE, x);

Abs| RE absl ota = new Absl RE(SLVocabul ary. | OTA);
absl ot a. set Vari abl e(x);
absl ot a. set Proposi ti on(absCost s);

/'l Let JADE convert from Abstract descriptor to string
get Cont ent Manager (). fill Content (nmsg, abslota);
send(nsg);

}
catch (CodecException ce) {
ce.printStackTrace();

}
catch (Ontol ogyException oe) {
oe. printStackTrace();

}

With reference to the above code it should be noticed that

cd isthe CD object we used in 4.6 to ask the Seller agent if he owns “Synchronicity”. Instead of
creating an empty AbsConcept and filling its slots from scratch (as shown in 5.2 we use the
ontology to trandae from Java object to abstract descriptor by means of the f r omoj ect ()
method.

Each variable has aname (“x” in this case) and atype indicated asa St ri ng; in this case the type
iSBasi cOnt ol ogy. | NTEGER as the variable is used to replace the price (an integer value) of
“Synchronicity”.

Thanks to the Vocabulary-interface pattern we don't care that the costs predicate is defined in the
ECommer ceOnt ol ogy, but we just deal with the Musi cShopOnt ol ogy.

The “ ot a” operator (indicated by the SLVocabul ary. | OTA congtant) is an operator of the SL
language that allows creating IRES indicating “the unique X such that a given predicate
(containing the variable X) istrue”.

5.6 Adding semantic constraints: Facets

The content languages and ontol ogies support included in thej ade. cont ent package gives the
user the possibility of setting additional constraints (called facets) to the predicates, agent actions
and concepts he defines in an ontology. As an example we would like to check that the pri ce of
an| t emis always a positive integer and we don’t want to explicitly perform this check each time
we deal with the Cost s predicate. In order to delegate this check to JADE it is sufficient to add to
thepri ce dot of the schema of the Cost s predicate a facet that checks that the value of thisdot is
greater than 0. This facet will be forced each time a content expression including the Cost s
predicate is trandated by the Cont ent Manager . From the implementation point of view afacet is
an instance of a class implementing the Facet interface included in thej ade. cont ent . schema
package.

The code to add this facet in the ECommer ceOnt ol ogy iS

/1 Structure of the schema for the Costs predicate

Predi cat eSchema ps = (PredicateSchemn) get Schenma(COSTS);

ps. add(COSTS_| TEM (Concept Schena) get Schema(| TEM) ;

ps. add(COSTS_PRICE, (PrimtiveSchem) getSchema(Basi cOntol ogy.|NTEGER));
ps. addFacet (COSTS_PRI CE, new Positivel nt egerFacet());

Wherethe Posi ti vel nt eger Facet class can be defined as

public class PositivelntegerFacet inplenents Facet {
voi d val i dat e(AbsObj ect abs, Ontol ogy onto) throws Ontol ogyException {

try {
AbsPrimtive p = (AbsPrinmtive) abs;
if (p.getlnteger() <= 0) {
throws new Ont ol ogyException(“Integer value <= 0");

}

}
catch (Exception e) {
throws new Ontol ogyException(“Not an I nteger value”, e);

}
}
}

5.7 Disabling semantic checksto improve performances

As described in 5.3, when tranglating a content expression form a string/byte sequence
representation to a Java object representation (and vice-versa), JADE validates the content
expression against its schema. If this validation succeeds the content is semantically correct with
respect to the ontology it refersto and the agent does not need to perform any explicit check. It's
clear however that the validation process takes its time. In order to speed up the performances the
user can disable the validation process by means of the set val i dati onMbde() of the

Cont ent Manager Class.

This can be a useful trick when developing “closed” applications (i.e. applications where al agents
are JADE agents and all of them use the JADE content languages and ontol ogies support). Unless
there are design/implementation bugs in facts, in these cases content expressions exchanged in
agent communication are likely consistent. On the other hand it is strongly suggested to keep the
validation process enabled when dealing with “open” applications in which different agents can
have completely different ways of internally representing content expressions.

5.8 User-defined content languages

As mentioned in 4.4, thej ade. cont ent package directly includes codecs for two content
languages (the SL language and the LEAP language) both supporting the content reference model
described in 3. In the great mgority of the cases a developer can just adopt one of these two
content languages and use the related codec without any additional effort. There are cases however
in which the user is forced to create agents “speaking” a different content language and therefore
he has to develop an adhoc codec for that |anguage.
From the implementation point of view a content language codec in JADE is an instance of aclass
extending the j ade. cont ent . | ang. Codec abstract class and, in particular, implementing the two
methods decode() and encode() to respectively
parse the content in an ACL message and convert it into an AbsCont ent El enent object.
encode the content from an AbsCont ent El ement object into the content language syntax and
encoding.
More in details, as a content expression inside an ACLMessage can be represented asa St ri ng or
as a sequence of byte (i.e. asabyt e[]), the Codec classis further specialized into St ri ngCodec
and Byt eAr r ayCodec. These two classes differ in the signatures of the abstract methods decode()

and encode() : Inthe former they trandate a st r i ng into/from an AbsCont ent El ement , whilein
the latter they trandate abyt e[] into/from an AbsCont ent El enent .

Asan example the sLCodec (included inthej ade. content . | ang. s| package) extends

St ri ngCodec, While the LEAPCodec (included in thej ade. cont ent . | ang. | eap package) extends
Byt eArr ayCodec.

5.9 Introspectors

In order to decouple the definition of an ontology (i.e. the definitions of the schemas in the
ontology) form the implementation of the classes representing the predicates, agent actions and
concepts included in the ontology, the ont ol ogy class does not deal directly with the trandlation
from abstract descriptors to java objects. On the other hand it delegates that task to an interna
object that implementsthe | nt r ospect or interface included in the j ade. cont ent . ont o package.
Thel ntrospect or interface includes three methods:

external i ze() totrandate a Java object into an abstract descriptor

internalize() totrandate an abstract descriptor into a Java object

checkd ass() to check that a Java class associated to a schema has a structure (i.e. accessor
methods) consistent with that schema and therefore that successive callsto the ext ernal i ze()
andinternalize() methods will succeed.

When defining an ontology it is possible to specify the I nt r ospect or object that the ontology will
use by passing it as a parameter in the constructor of the ontology. Thej ade. cont ent package
comes with adefault | nt rospect or (called Ref | ecti vel ntrospect or asit uses Java Reflection
to perform the trandations) that is used unless the user explicitly specify a different one and that
requires the ontological Java classesto have the structure described in 4.3 By using a different

I ntrospector it istherefore possible to use Java classes that does not meet the structure described
in 4.3to represent the predicates, agent actions and concepts included in an ontology.

6 USING PROTEGE TO CREATE JADE ONTOLOGIES

Especialy when dealing with large ontologies, developing the ontology definition class (i.e. the
schemas) and the Java classes representing the predicates, agent actions and concepts included in
the ontology “by hand” as described in 4.2and 4.3 can be really time consuming. Thanksto a
proper plug-in (called beangener ator) implemented by C.J. van Aart from Department of Social
Science Informatics (SWI) University of Amsterdam it is possible to define the ontology using
Protégé and then let the beangenerator automatically create the ontology definition class and the
predicates, agent actions and concepts classes.

This process is very convenient as it allows working withan ad-hoc graphical tool (as Protégéis)
instead of writing Java code in the ontology definition process.

The beangenerator can be freely downloaded from
http://www.swi.psy.uvanl/usr/aart/beangenerator together with detailed instructions about how to
plug it into Protégé and how to use it to convert a Protégé ontology into a JADE ontology.

7 MIGRATING FROM THE OLD SUPPORT TO THE NEW ONE

This section briefly describes how to modify code already written for the “old” support for content
languages and ontologies provided by JADE so that it can be used with the new one.
There are four differences that must be considered.

1) The format of the ontology definition class is different. This is certainly the main effort that is
required in this process as it basically requires re-writing the ontology definition class from scratch
asdescribed in 4.2 It should be noticed however that this modification is completely self-
contained i.e. it does not require any modification to the application code that uses the ontology.

2) The structure of the Java classes representing the predicates, agent actions and concepts
included in the ontology are different. In the old support in facts, given a ot named nnn of type T

with cardinality > 1 the associated Java class should have two accessor methods with the signature
public void addNnn(T t);
public Iterator getAl I Nnn();

On the other hand in the new support the two accessor methods should be

public void setNnn(List |);
public List getNnn();

In order not to force the user to change al these accessor methods (note that this modification
would also require changing the application code that uses the ontology) a proper | nt r ospect or
(see 5.9for details) is provided that alows using classes with the “old” structure within the *“ new”
support. This | nt r ospect or iscalled BCRef | ecti vel nt rospect or (Backward-Compatible
Reflective Introspector) and is included in the j ade. cont ent . ont o package.

At the end of the day the user only need to specify that the ontology must use a
BCRef | ecti vel ntrospect or instead of the default Ref | ecti vel nt rospect or .

3) All Java classes representing predicates, agent actions and concepts in the antology must be
modified to implement Pr edi cat e, Agent Act i on and Concept respectively.

4) When registering the Codec and the Ont ol ogy and when filling/extracting ACLMessages
content the methods of the Cont ent Manager must be used instead of the respective methods of
the Agent class.

