- -
UPV
 
Home UPV :: Profiles :: Media :: Web news

The UPV, international reference in the design of the chips of the future

José Capmany and Daniel Pérez analyse in 'Nature' programmable photonics, key for quantic computing and the autonomous car

[ 13/10/2020 ]

Journal Nature has published an analysis on the most significant landmarks in the field of programmable photonics, a technology that will revolutionise the design and performances of chips. Two of the authors are researchers from the UPV, Daniel Pérez and José Capmany.

The chips of the future will include photonics and electronics; they will have a bandwidth, speed and processing and computing abilities that are currently unthinkable; they will make it possible to integrate many other components and their capabilities will increase exponentially compared to electronic chips. In all, they will be essential in many fields; they will bring us a little closer, for example, to quantic computing or to the autonomous car.

The key resides in programmable photonics, a technology in which the Polytechnic University of Valencia (UPV), through the Photonics Research Labs of the iTEAM institute and its spin-off iPronics, programmable photonics SL is today an international benchmark. This much is confirmed by Nature, which in its latest iteration publishes an article that analyses the present and future of this discipline – programmable photonics – signed, among others, by Photonics Research Labs researchers Daniel Pérez and José Capmany.

“Programmable photonics marks a before and an after in the field of telecommunications. It is a field with great potential and value, due to the complementarity it has with electronics. Our article includes all the progress that has been achieved heretofore around the world in this field, which is garnering increased interest,” highlights José Capmany.

Democratising photonics

As part of this progress, a special mention must go to the generic purpose programmable chips that the UPV research team is working on. These circuits are capable of providing numerous functionalities by using a single structure, in an analogous way as how microprocessors work in electronics. The article also includes the most recent landmarks in the development of chips for specific purposes – designed for a specific task – and mentions the research of European centres such as the University of Ghent and the Polytechnic University of Milan, or American centres such as the MIT, the University of Stanford and the University of Toronto.

“From a fundamental point of view, the article describes and presents the technology of integrated photonics and the different levels required – photonic hardware, control electronics and software – to make the most of the potential of this type of systems,” adds Daniel Pérez.

For the UPV researchers, these technologies will make it possible to “democratise” photonics, which would entail a “true revolution” in the field of telecommunications.

“As well as for the autonomous car or quantic computing, integrated photonics will also help improve automated learning systems, 5G communications or the development of neuromorphic computing, with chips that will imitate the network of neurons of our brain and their connections. All these uses require great flexibility and the processing of large amounts of data at high speeds. And this is what programmable photonics offers, and it is what the article published in Nature addresses,” highlights Daniel Pérez.

Three in Nature and upcoming challenges

With this one, journal Nature has now published three articles on the work developed by researchers from the PRL-iTEAM of the UPV in the field of integrated photonics, an achievement that consolidates their international leadership in this field.

On the upcoming challenges, José Capmany and Daniel Pérez stress the need to provide the systems with scalability and integrate more and improved components in the chips. “Today, research is focused on scalability, both of hardware and software. And we predict that in two or three years, the amount of tunable units integrated in chips could double. This way, the level of capabilities, what we could do with these chips, will increase exponentially,” conclude the researchers of the PRL-iTEAM of the UPV.

Outstanding news


85% from waste 85% from waste
The UPV obtains the most ecological concret in the world, whose creation process generates 78% less emissions than usual
QS World University Ranking QS World University Ranking
The UPV obtains the highest ranking in its history in one of the 3 most prestigious university indicators in the world
Times Higher Education Times Higher Education
The THE's prestigious World University Ranking
Atlantic II Atlantic II
Hyperloop UPV reaches a transatlantic agreement and begins to build the prototype of the train of the future

EMAS upv