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Small ball properties for Fr  échet spaces

Leonhard Frerick and Alfredo Peris

Abstract. We give characterizations of certain properties of continuous linear maps betwagrerr
spaces, as well as topological properties oechRet spaces, in terms of generalizations of Behrends and
Kadets small ball property.

Propiedades de bola peque fia para espacios de Fr échet

Resumen. Caracterizamos ciertas propiedades para aplicaciones lineales y continuas entre espacios de
Fréchet, ascomo propiedades topijicas en espacios deéehet, en&rminos de propiedades de bola
pequéa inspiradas en el concepto de la propiedad de bola padotoducido por Behrends y Kadets.

Dedicated to the memory of Professor Klaus Floret

Let (M, d) be a metric space. Following Behrends and Kadets([], d) has the small ball property
(sbp), by definition, if for alls > 0 there are(s,,),en €]0, [N decreasing and converging to zero, and
(%)nen € MY such that the union of the balB(z,,,d,) := {y € M : d(z,,,y) < 6,} coversM.

If D Cc M, an equivalent formulation gives th@D, d| p) has the (sbp) if and only if, fazachdecreasing
zero sequencé, ),y Of positive numbers, there is a sequeldg ),.cn Of finite subsets ofl/ such that

Dc | B(An.en),
neN

whereB(A4,6) := {z € M : d(z, A) < §}. This formulation motivates us to give the following general
definition:

Definition 1 Let (M, d) be a metric space and le¥ be a family of subsets aff (shortly,.oz C 2*) stable
under finite unionsD C M has theo/-small ball property(.<7-sbp if, for each decreasing zero sequence
(en)nen Of positive numbers, there {sl,,),.en € 27" such that

Dc | B(An en).
neN
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From now on we assume that the familg/is stable under finite unions. In our definition of th&sbp
it is enough to require that for evedy> 0 there argd,,),.en €]0, 5[ decreasing and converging to zero,
and(A,)nen € 2N such that
D c | B(An,bn).
neN

There are many such families of subsets @&dhet spaces which are natural and provide characterizations
of several known properties. To show this we need a result which is essential for the rest of the note. It is
an extended version of a result of Behrends and Kadets which allows us, in addition, to consider images of
maps.

Proposition 2 LetT : (M1, d;) — (Ms,ds) be a uniformly continuous map between metric spaces where
(Mjy,d;) is in addition complete and let/ C 2M=. If T(M;) has the</-sbp then there exists an> 0
such that for alls > 0 there arex € M; and A € o7 withT'(B(z,r)) C B(A,¢).

PROOF  Assume that the condition does not hold. Then there is an increasing fuactjonoo) —
[0, 00) with lim,._,¢ e(r) = 0 such that

T(B(x,r)) ¢ B(A,2e(2r)) 1)

forall» > 0,2 € M; andA € /. The uniform continuity ensures the existence of an increasing function
0 :]0,00) — [0, 00) with lim._,¢ §(¢) = 0 such that

T(B(z,6(e))) C B(T(z),¢)

forall 2 € M; ande > 0. We may assume that(r) := o e(r) < ,r > 0. SinceT'(M;) has thes/-sbp
there is a sequende,, ) eny With e(1) > &1 > -+ > ¢, — 0 and(4, )nen € & with

T(M) € | B(An.n).
neN

Lety; € M; be arbitrary. We set’(1) := 1, Ny := 0. We take a sequence of non negative integers
(N,) such thatV, > N;,_; andey, < e(v*(1)) for everyk > 1. We claim that we can choose inductively
a sequenceyy,) such that

k—1 1
Yr+1 € By, VT())

and
T(Blyrs, )N () B(Anen) =0.

Np_1<n<Ny

Indeed, assume that for al}..; € B(yk, 5 )there iszB(yxs1,7*(1)) and Ny_1 < n < N with
T(2) € B(An,e,). Thends (T (yx+1), An) < do(T(yx11), T(2)) + &, < 2e(y*~1(1)). This would imply

k—1
18w 5B U An6 ),

Nji_1<n<Ny

a contradiction to (1).

From~(y*~1(1)) < i 1( ) we obtainB(yy+1,7*(1)) C B(ye,v*~1(1)) for all k € N. The com-
pleteness of M, d;) |mpI|es that there iy € ,,cy B(yn,7" (1)) and we obtain

y) & U U B(An,en),

k€ENg Nr_1<n<Ng



a contradiction td'(M;) C U, ey B(An,€,). B

Our goal is to apply this characterization of small ball properties to the contexéoh€t spaces. We
refer the reader to [4] for notation and general properties eflfet spaces. Let us recall that angdfret
spaceF’ admits a translation invariant metric that generates the topolody. oDn the other hand it is
easy to see that small ball properties do not depend on the translation invariant metric that is fixed on
generating its topology. From now on all@ehet spaces will be assumed to be endowed with a translation
invariant metric. Natural maps betweeréEhet spaces are linear and continuous, and within this setting we
can obtain a nicer characterization of small ball properties.

Lemma 3 LetT : E — F be a continuous linear map betweereEhet spaces and let C 27" such that
i) forall A € o andX > 0 we have\A € &7, and
i) forall A € & andx € E there isB € & such thatl'(z) + A C B.
ThenT(E) has thes7-sbp if and only if there exists a zero neighbourhdbéh E such that for every zero
neighbourhood/ in F' there isA € o/ with

(+) T(V)C A+U.

PROOF  Using i) and the fact that neighbourhoods are absorbing it is easy to see that cofidifon
sufficient.

Assume now thaf'(E) has thee7-sbp. By Proposition 2, there is a zero neighbourh@oith E such
that for all zero neighbourhoods$ in F' there isx(U) € E andAy(U) € </ such that

T(x(U)+V)C Ay(U)+U.
Condition(x) follows by takingA € o/ such thatl'(—z(U)) + Ag(U) C A. R

Examples for systemg’ satisfying the above assumptioijsandii) are the systerd(F’) of all finite
subsets of", the systen(F') of all bounded subsets @, and the systerx(F') of all absolutely convex
ando (F, F')-compact subsets df. Applying Lemma 3 to these examples we obtain

Theorem 1 LetT : E — F be a continuous linear map betweereEhet spaces. Then
i) T'is compact iffl'(E') has the€ (F')-shp,
ii) T is bounded ifiT’(E) has the#(F')-sbp,
i) T is weakly compact iff'(E) has theX(F')-sbp.
PrROOFE  We will just showiii): It is obvious that weak compactness is sufficient. Conversely, let
T(FE) have theX(F)-sbp. If (U, )nen is an arbitrary zero basis ifl, Lemma 3 ensures the existence of

an absolutely convex zero neighborhdddn E and a sequended,, ).y Of absolutely convex and weakly
compact sets i#” such that

T(V) C () (An + Un).
neN

This implies thatl’'(V') is bounded and that

T(V)°° C () (An +Un)®,
neN

where the first polar is taken with respect to the dual systeR) F’ > and the second polar is taken with
respect to< F', F” >. Since A, is absolutely convex and weakly compact we héde + U,,)°° =
A, + UZ° and hence
T(V)*° c (J(F+UP)CF,
neN



sincel’ is a closed subset of its strong biduél. Together with the boundednessofV'), this shows that
T (V) is relatively weakly compact. B

Now we can characterize several topological properties fechat spaces in terms of small ball prop-
erties. Let us recall the most fundamental properties:
Given a Fechet spac#, we say that

e F is aSchwartzspace if, for any absolutely convex zero neighbourhbooh £, we have that the
canonical mapy : E — Ey into the local Banach spade; is compact,

e F is aMontelspace if every bounded subsetiofs relatively compact,

e Fisquasinormabléf, for any zero neighbourhoaod in F, there is a zero neighbourho®dcontained
in U such that, for each > 0, there is a bounded sét satisfying

VcB+el.

Assertions) in the following theorem is already proved by Behrends and Kadets [1, Corollary 3.7] in
the particular case whefi is a Banach space.

Theorem 2 Let F be a Frechet space. Then

i) E is finite dimensional ifE' has thes(E)-sbp.

i) E'is a Banach space iff has theZ(E)-sbp.

i) E is a reflexive Banach space fif has theX(E)-shp.

iv) E is a Schwartz space iff for every continuous linear rfiaffom £ into any Banach spac# the set
T(FE) has theT' (&(E))-sbp (or, equivalently, the&’(F')-sbp).

V) E is quasinormable iff for every continuous linear niBrom E into any Banach spac¥ the setl'(E)
has theT' (#(E))-sbp.

vi) E is reflexive and quasinormable iff for every continuous linear Mfidpm E into any Banach space
X the setl'(E) has theT' (X(E))-sbp.

vii) E is Montel iff for every continuous linear mapfrom any Banach spac¥ into E the setl'(X) has
the&(E)-sbp.

viii) E is reflexive iff for every continuous linear m@pfrom any Banach spac¥ into £ the setl’(X) has
theX(E)-sbp.

PROOF i) is a consequence of propertyin Theorem 1 forl' = I and the fact that a non-empty
open set in a topological vector space is relatively compact if and only if the space is finite dimensional.
i1) is a direct consequence of propeityin Theorem 1 fofl’ = I and the fact that an open set in &€&et
space is bounded if and only if the space is Banach.
ii1) is a consequence of the previous equivalefiteTheorem Lii), and the fact that a Banach space is
reflexive if and only if its closed unit ball is weakly compact.

iv): If E'is Schwartz,X is Banach space arll : F — X is linear and continuous, then it is obviously
compact and we obtain thd@t(E) has theT (&(FE))-sbp by Theorem %). Conversely, if for each local
Banach spac& := Ey we have that the canonical mdp: £ — X satisfies thaf'(F) has theT'(&(E))-
shp, then Theorem ) implies thatT" is compact, and therefoi is Schwartz.

v): E is quasinormable if and only if, for each absolutely convex zero neighbourtiodidere is a zero
neighbourhood’ contained i/ such that for every > 0 there is a bounded sé&t satisfying

T(V) C T(B) + €U,



whereT : E — Ey is the canonical map, ard is the unit ball ofEy;. Therefore, by Lemma 3, quasi-
normability is a necessary condition. Converselyifs quasinormable and : £ — X is a continuous
linear map into an arbitrary Banach spa<ethen there is a local Banach spdcg such thatl” factorizes
in the canonical way trough the m&p: £ — Ey. We have thaS(E) has theS(#(FE))-sbp, thusT'(E)
has thel'(%Z(FE))-sbp.

vi) is a consequence of the previous equivalencand the fact that a Echet space is reflexive if and only
if the bounded sets are relatively weakly compact.

vii): If E'is Montel, X is a Banach space afid: X — E is linear and continuous, théf( Bx ) is bounded
and thus relatively compact. Prope#fyin Theorem 1 implies thaf'(X) has thef'(E)-sbp. Conversely,
if B is an absolutely convex and closed bounded subsgt tiien the continuous inclusidhi : Eg — E
defined on the Banach spafg associated t@ satisfies that, by Theoremi}, T'is compact. This implies
that B is relatively compact.

viii): A Fréchet space is reflexive if and only if for eaBhbounded and for every zero neighbourhdod
there is a weakly compact subdétof £ such that

(x)) BCK+U.

(See [3, 1.9] and [2, Lemma 2.2] for a detailed proof in a more general case).

If T(Ep) has the(E)-sbp for each absolutely convex and closed bounded sibskE, then Lemma
3 gives(x)’, so E is reflexive. Conversely, i¥ is reflexive, X is a Banach space, and: X — E'is
continuous and linear, théh is weakly compact and we conclude by Theoremx) W
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