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Abstract

We show the existence of chaotic (in the sense of Devaney) polynomials on Banach sp
q-summable sequences. Such polynomialsP consist of composition of the backward shift with a c
tain fixed polynomialp of one complex variable on each coordinate. In general we also prove tP

is chaotic in the sense of Auslander and Yorke if and only if 0 belongs to the Julia set ofp.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

A continuous mapf :X →X on a metric spaceX is topologically transitiveif, for each
pairU,V ⊂X of non-empty open sets, there isn ∈ N so thatf n(U)∩V �= ∅. For complete
separable and perfect (i.e., without isolated points) spacesX, transitivity is equivalent to
the existence ofx ∈X such that the orbit

Orb(x) := {x,f x,f 2x, . . .}
is dense inX. The pointx is then calledhypercyclicand the set of hypercyclic points is
denseGδ-subset ofX.

The mapf is calledchaotic in the sense of Auslander and Yorke (from now on,AY-
chaotic) if it is transitive and it has sensitive dependence on initial conditions, that is

E-mail address:aperis@mat.upv.es.
1 Supported by MCYT and FEDER, Proy. BFM2001-2670.
0022-247X/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(03)00547-X



488 A. Peris / J. Math. Anal. Appl. 287 (2003) 487–493

ce
nce on

nach

omo-
Grosse-
hyper-
d

c non-
ere we
mials
homo-

clic
∃ε > 0 ∀x ∈X ∀δ > 0 ∃y ∈X ∃n ∈ N:
d(x, y) < δ but d(f nx,f ny) > ε.

The mapf is chaotic in the sense of Devaney (from now on,D-chaotic) if it is tran-
sitive, the setP of periodic points off is dense inX, andf has sensitive dependen
on initial conditions. Several authors (see, e.g., [1]) showed that sensitive depende
initial conditions is redundant in Devaney’s definition.

We will be concerned with chaos for polynomials on (separable) complex Ba
spacesX.

A map Q :X → X is an m-homogeneous polynomialif there existsA :X × X ×
· · · × X → X multilinear and continuous such thatQ(x) = A(x,x, . . . , x) for all x ∈ X.
P :X → X is a (continuous)polynomial if P = ∑l

m=0Qm, where eachQm is anm-
homogeneous polynomial.

In this context transitivity is equivalent to the existence of dense orbits, that is,P is
hypercyclic.

Many examples of hypercyclic linear operators (in other words, hypercyclic 1-h
geneous polynomials) on Banach spaces are known. See, e.g., the survey of
Erdmann [3]. However, in contrast to this fact, Bernardes showed that there are no
cyclicm-homogeneous polynomials of degreem> 1 on any Banach space [2]. Motivate
by this result, Aron (personal communication) asked whether there exist hypercycli
homogeneous polynomials of degree strictly greater than 1 on Banach spaces. H
solve Aron’s question affirmatively by showing that there are even D-chaotic polyno
of degree greater than 1 on Banach spaces. In [6] it was proved that there are chaotic
geneous polynomials of degreem > 1 on Fréchet spaces. More examples of hypercy
and chaotic polynomials on Banach and Fréchet spaces are given in [5].

Our polynomials will be defined on spacesX of q-summable sequences (1� q <∞)

lq :=
{
x = (xi)i ∈ C

N/‖x‖q :=
( ∞∑

i=1

|xi |q
)1/q

<∞
}
,

and on the space of null sequences

c0 :=
{
x = (xi)i ∈ C

N/ lim
i
xi = 0, ‖x‖∞ := sup

i

|xi |
}
.

We first show that the polynomial of degreem,

P :X →X, x = (x1, x2, . . .) �→ (
(x2 + 1)m − 1, (x3 + 1)m − 1, . . .

)
is D-chaotic onX = lq or c0, for anym> 1, thus answering Aron’s question.

This motivates us to study general polynomials of the form

P :X →X, x = (x1, x2, . . .) �→ (
p(x2),p(x3), . . .

)
,

wherep :C → C is a fixed complex polynomial. We characterize AY-chaos ofP and show
that it is equivalent to the fact that 0 is a fixed point ofp belonging to the Julia set ofp.
Finally we prove thatP is D-chaotic if 0 is a repelling fixed point ofp.
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A classical result of Rolewicz [7] establishes that, forX = lq or c0, the weighted back
ward shift operator

λB :X →X, x = (x1, x2, . . .) �→ (λx2, λx3, . . .)

is hypercyclic if|λ|> 1. Actually, it is D-chaotic.
By using the operator of Rolewicz and an argument with commutative diagram

give the first examples of chaotic polynomials of degree greater than 1 defined on a B
space.

The following result, which is well known, can be found in, e.g., [4].

Lemma 2.1. LetX be a Banach space andf , g, andφ be continuous maps defined onX
with values inX such that the diagram

X

φ

f
X

φ

X
g

X

is commutative(i.e.,φ ◦ f = g ◦ φ), andφ has a dense range. Iff is D-chaotic, theng is
D-chaotic.

In this section we will consider the polynomials of degreem,

P :X →X, (xi)i �→ (
(xi+1 + 1)m − 1

)
i
,

where X = lq or c0 (1 � q < ∞) and m � 2. It is clear thatP = ∑m
k=1Qk with

Qk((xi)i) := (
m
k

)
(xki+1)i a k-homogeneous continuous polynomial for eachk. Therefore

P is also well defined and continuous.

Proposition 2.2. P is D-chaotic.

Proof. We defineφ :X → X, φ((xi)i ) := (exi − 1)i , which is locally Lipschitz (hence
continuous), and has dense range. We have, forλ :=m andx ∈X, that

(φ ◦ λB)x = φ
(
(λxi+1)i

)= (eλxi+1 − 1)i = (P ◦ φ)x.
That is, the diagram

X

φ

λB
X

φ

X
P

X

is commutative. By Lemma 2.1 we conclude thatP is D-chaotic. ✷
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3. Chaotic polynomials and Julia sets

Inspired by the examples of the previous section, we will consider now the ge
polynomials

P :X →X, (xi)i �→ (
p(xi+1)

)
i
,

wherep :C → C is a complex polynomial withp(0) = 0, a necessary condition in ord
thatP is well defined.

A natural question is whether the (chaotic) dynamics of the polynomialP in infinite
dimensions and the (chaotic) dynamics of the polynomialp of one complex variable ar
related. We will show that the answer is positive.

We first recall some basic facts and definitions from complex dynamics.
A family A of meromorphic functions defined on an open setD ⊂ C̄ := C ∪ {∞} is

normal if it is equicontinuous on any compact subset ofD. A sufficient condition for
normality is given by

Montel’s theorem. If there are three values that are omitted by everyf ∈ A, thenA is
normal.

Given a polynomialp : C̄ → C̄ (p(∞) := ∞), its associatedFatou setis

F(p) := {
z ∈ C̄/A := {pn, n ∈ N} is normal on some neighbourhood ofz

}
.

TheJulia setis J (p) := C̄ \F(p).
A periodic pointz of p with periodk is repelling if |(pk)′(z)|> 1.
The following equality (due to Fatou and Julia) relates the Julia set to the set of rep

periodic points:

J (p)= {z ∈ C/z is a repelling periodic point ofp}.
It is well known that, for polynomials of degree greater than 1, the Julia setJ (p) is a

non-emptyp-invariant compact set such that the restrictionp :J (p)→ J (p) is D-chaotic.
We also need the following lemma, whose proof is included for the sake of com

ness.

Lemma 3.1. Letp :C → C be a polynomial withdeg(p)� 2. Given an elementx0 ∈ C in
the Julia set ofp, a neighbourhoodU ⊂ C of x0, ε > 0, and a finite collection{z1, . . . , zn}
of elements inC, then there arexi ∈ U , i = 1, . . . , n, andm ∈ N such that|pm(xi)− zi |
< ε, i = 1, . . . , n.

Proof. Let u be a repelling periodic point ofp in U . If k is the period ofu, since
|(pk)′(u)| > 1, there is a diskU0 centered atu contained inU such thatpk(U0) ⊃ U0.
Then

Uj := pjk(U0)⊂ p(j+1)k(U0)= Uj+1, j ∈ N.

By Montel’s theorem the familyA := {pjk :U0 → C̄/j ∈ N} has, at most, two excep
tional points which are omitted (actually, at most one since∞ is omitted) byA. Therefore
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we find{y1, . . . , yn} ⊂ C with |yi − zi |< ε such thatyi is not omitted byA, i = 1, . . . , n.
That is,

{y1, . . . , yn} ⊂
⋃
j∈N

pjk(U0)=
⋃
j∈N

Uj .

In particular, since theUj ’s are increasing, there isj ′ ∈ N satisfyingyi ∈ Uj ′ ⊂ pm(U),
i = 1, . . . , n, wherem := j ′k. ✷
Theorem 3.2. LetX = lq or c0 and letP :X →X be the continuous polynomial given
P((xi)i) := (p(xi+1))i , wherep :C → C is a polynomial of degree strictly greater than1
such thatp(0)= 0. The following conditions are equivalent:

(i) P is AY-chaotic,
(ii) P is hypercyclic,
(iii) P has sensitive dependence on initial conditions,
(iv) 0 belongs to the Julia set ofp.

Proof. (i)⇒ (ii) It follows from the definition of AY-chaotic.
(ii) ⇒ (iii ) For ε := 1, given x ∈ X and δ > 0, we find k ∈ N such that‖x −

(x1, x2, . . . , xk,0,0, . . .)‖< δ. There isz ∈X hypercyclic forP so that‖x− z‖< δ. Since
the orbit of x̄ := (x1, . . . , xk,0, . . .) tends to 0, by the hypercyclicity ofz we getn ∈ N

satisfying‖Pnx̄ − Pnz‖> 2. That is, either‖Pnx̄ − Pnx‖> ε or ‖Pnz−Pnx‖> ε.
(iii )⇒ (iv) If 0 /∈ J (p) then{pn, n ∈ N} is normal on some neighbourhood of 0. Th

implies that the sequence of derivatives{(pn)′, n ∈ N} is also normal on some neigh
bourhood of 0. In particular, since 0 is a fixed point ofp, we have that{(pn)′, n ∈ N} is
uniformly bounded on some neighbourhood of 0, that is, there existδ,M > 0 such that
|(pn)′(z)| �M for all n ∈ N and for eachz ∈ C such that|z|< δ. Therefore,

|pnz| �M|z|, ∀n ∈ N, ∀z: |z|< δ.

By definition ofP we get

‖Pnx‖ �M‖x‖, ∀n ∈ N, ∀x: ‖x‖< δ.

But this means thatP does not have sensitive dependence on initial conditions at 0, w
is a contradiction.

(iv)⇒ (i) Since we already know that (ii) implies (iii) and that(ii)+ (iii )= (i), we just
need to prove that (iv) implies (ii). By Lemma 3.1, for any finite collection{x1, . . . , xm}
⊂ C and anyδ > 0, there are{z1, . . . , zm} ⊂ C andn ∈ N such that|zi |< δ and|pnzi − xi|
< δ, i = 1, . . . , n. We are done if we show thatP is transitive, i.e., if for anyx, y ∈X and
ε > 0, there aren ∈ N andȳ ∈X such that

‖ȳ − y‖< ε and ‖Pnȳ − x‖< ε.

Letm ∈ N be such that∥∥x − (x1, . . . , xm,0, . . .)
∥∥< ε

and
∥∥y − (y1, . . . , ym,0, . . .)

∥∥< ε
.

2 2
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Pick δ := ε/2m and findn > m, {z1, . . . , zm} ⊂ C with |zi | < δ and|pnzi − xi| < δ, i =
1, . . . ,m. Define then

ȳ := (
y1, . . . , ym,0, . . . ,0,

n+1
z1 , . . . , zm,0, . . .

)
.

We conclude‖ȳ − y‖< ε and

‖Pnȳ − x‖< ε

2
+ ∥∥(pnz1, . . . , p

nzm,0, . . .)− (x1, . . . , xm,0, . . .)
∥∥< ε. ✷

We would like to compare Theorem 3.2 with Proposition 2.2. The linear part of the
nomial of Proposition 2.2 is the operatormB, which is D-chaotic. In general, polynomi
dynamics is richer than linear dynamics in the sense that the linear part of an AY-c
polynomial might be non-chaotic. More precisely, if we consider the complex polyno
p(z) := z + z2, it is clear that 0 is a non-repelling fixed point ofp which belongs to the
Julia set ofp. Therefore, the corresponding polynomialP defined onX is AY-chaotic. On
the other hand, the linear part ofP is the backward shiftB, which is neither hypercyclic
nor has sensitive dependence on initial conditions!

Chaos in the sense of Devaney seems to be a stronger condition than AY-chaos
our framework.

Proposition 3.3. Let X = lq and letP : X → X be the continuous polynomial given
P((xi)i) := (p(xi+1))i , wherep : C → C is a polynomial of degree strictly greater than1
such thatp(0)= 0. If 0 is repelling thenP is D-chaotic.

Proof. Since repelling points are contained in the Julia set, in view of Theorem 3.2 w
have to show the density of periodic points. Fixx ∈X andε > 0 and select|p′(0)|> λ> 1.
We pickm ∈ N with ‖x−(x1, . . . , xm,0, . . .)‖< ε/2 andδ < ε/6m such thatp(U0)⊃ λU0
for any diskU0 centered at 0 of radius smaller thanδ. By Lemma 3.1, we findn > m

and{z1,1, . . . , z1,m} ⊂ C such that|z1,i| < δ and|pnz1,i − xi | < δ, i = 1, . . . ,m. Without
loss of generalityn is chosen so that

∑∞
k=1λ

−kn < 1. Proceeding by induction we sele
{zj,i ∈ C, j > 1, i = 1, . . . ,m} satisfying|zj+1,i | < λ−jnδ andpnzj+1,i = zj,i , j ∈ N,
i = 1, . . . ,m. We then define

z := (
z0,1, . . . , z0,m,0, . . . ,0,

n+1
z1,1, . . . , z1,m,0, . . . ,0,

2n+1
z2,1 , . . .

)
,

wherez0,i := pnz1,i , i = 1, . . . ,m. By definition z is a periodic point ofP , and taking
x̄ := (x1, . . . , xm,0, . . .), we have

‖x − z‖ � ‖x − x̄‖ + ‖x̄ − z‖< ε

2
+ ε

3
+
( ∞∑
k=1

λ−kn
)
ε

6
< ε. ✷

Remark 3.4. WhenX = c0, a stronger result can be obtained. Namely, all condition
Theorem 3.2 are equivalent to D-chaos ofP . For such a purpose we need to constr
periodic points as in the proof of the previous proposition, but this time we only
that (zj,i ) tends to 0 whenj tends to infinity, which can be done if we just assume th
belongs to the Julia set ofp.
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We do not know forX = lq if 0 ∈J (p) suffices to get thatP is D-chaotic, but we think
that this is not enough.

Conjecture 3.5. If X = lq , 1 � q < ∞, thenP :X →X is D-chaotic if and only if0 is a
repelling fixed point ofp.
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