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Abstract In this paper we propose a new augmented virtuality framework
where the synthetic scenario is populated with the information coming from the
real-world. Our proposal is based on a smart camera which processes the images to
detect objects. With this information, our framework relies on the collisions of the
optical rays with the scenario to locate the detected objects. Our solution is also
capable of handling situations where objects are piled on others.
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1 Introduction

Video surveillance is an increasingly active research area, and different researchers
have proposed systems for visual surveillance using mixed reality. Most surveil-
lance solutions are based on augmented reality and very few systems offer
augmented virtuality applications, where the virtual environments are augmented
with data and media coming from the real world.

In this paper we present a new augmented virtuality framework using automatic
video interpretation. The framework that we propose combines a computer
graphics application with a smart camera which is currently being developed under
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the SENSE project.1 This smart camera performs image analysis onboard and
outputs a stream of XML-coded information containing the details on the detected
objects [1]. In this way, our aim is to develop a fully synthetic environment where
the augmentation is only used to indicate the characteristics of the detected objects
and their location. The graphics application uses the information coming from the
smart camera to infer the 3D characteristics of each detected object. Previous
solutions have typically used bounding boxes to locate the objects [2, 3], which
result in very simple approximations. In our proposal we use the silhouette
information to calculate the size of the objects in their three dimensions. Once
the 3D scene is populated, the user can vary the view-point as desired to observe
the scene from a better perspective.

This paper is structured as follows. The following section introduces previous
solutions for the simulation of real scenarios in 3D. Section 3 details the proposed
framework and describes the algorithms. Section 4 presents the results that we
have obtained and, finally, the conclusions and the main ideas for future work are
given in Sect. 5.

2 Previous Work

There are two main lines of research regarding augmented virtuality for surveil-
lance. On the one hand, some authors propose combining 3D environments with
real videos. In this sense, 3D scenarios are augmented by locating the real cameras
on them and adding a textured quad on this position to render the video sources.
These solutions aim at offering situational awareness so that the user has a clearer
understanding of where the cameras are located [3, 4].

On the other hand, some authors propose using computer graphics techniques to
estimate the position of the objects [2, 3]. This process is depicted in Fig. 1, where
the synthetic camera (point A) is located and oriented as the real-world camera,
while the image plane is located and oriented so that it matches exactly the
perspective view from the synthetic camera. Authors commonly use very rough 3D
scenarios and create a simple textured polygon at point C to represent the object
with an image from the video source [2, 3, 5]. From a different perspective, other
authors propose training the systems to detect a low range of objects. Then, when
simulating a scene, the algorithms perform a classification of the objects by finding
the combination of type of object, height and orientation that best fits the detected
bounding box in the 2D image [6]. With a similar idea, Osawa et al. use the
information of previous frames to produce a set of synthetic images by varying the
position of the objects in the 3D scenario until the objects detected in the real and
the synthetic images are the same [7].

1 SENSE stands for Smart Embedded Network of Sensing Entities (Project 033279), developed
under a grant from European Sixth Framework Programme
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3 Augmenting the Virtual Environment

To convert the 2D information obtained from the camera into accurate 3D data, we
follow an approach similar to the one presented in Fig. 1. The main difference with
previous approaches is that we use multiple points from the silhouettes to obtain
a much better approximation. For the visualization system we have chosen
OpenSceneGraph as rendering engine [8]. For the correct performance of the
proposed solution, the 3D scenario must be modeled with the actual sizes of the
real-world and the camera must be correctly registered. Within the synthetic
environment, each detected object is rendered as a cuboid (see Fig. 2).

Depending on the information retrieved from the camera, the system is capable
of modeling the objects with more or less detail. For every detected object we are
always able to use the information of their bounding box. Nevertheless, if the
detected silhouette meets some requirements the framework is also capable of
using the silhouette information to model the object with a higher accuracy.

3.1 Using the Bounding Box to Model the Object

The information on the bounding box that the smart camera outputs can be used to
approximate the location and shape of the detected object. The algorithm to follow

Fig. 1 Example of object
location by casting a ray from
A (optical center) through B
(object location on the image
plane) intersecting the floor
in C (calculated 3D position)

Fig. 2 Cuboid, the
geometrical shape used to
represented the detected
objects
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in this case is simple. Firstly, we start by casting two rays towards the scenario
through the two bottom corners of the bounding box. The two collisions give us
the location of the object within the scenario and the projected width. Secondly,
we create a quad centered between the two collisions and oriented accordingly.
The width of the box is slightly increased and the height is given a high value to
avoid errors in the following step. The third step consists in casting two more rays
through the two top corners of the bounding box. These collisions indicate the
height of the detected object, which is calculated as the average of the values
obtained from each collision. Finally, we must infer a value for the length of the
cuboid, as this third dimension of the object cannot be assessed from the bounding
box. The length can be fixed for every object or proportional to its width and/or
height.

3.2 Using the Silhouette to Model the Object

Although the approach presented in the previous section was suitable for all cases,
the algorithm proposed in this section is only adequate for objects oriented with
respect to the camera in such a way that perspective information is available.
Using the notation presented in Fig. 2, when the casted ray towards vertex v1 is
parallel to the edge ðv2; v1Þ and perpendicular to the edge ðv5; v1Þ (or vice-versa),
it is not possible to infer further details on the cuboid as we lack information on the
width or the length of the object.

The idea of our second augmentation algorithm is to select the silhouette points
that can correspond to the vertices of the cuboid:

• from the points located near the left side of the silhouette, select the one at the
bottom to represent v2

• from the points located near the right side of the silhouette, select the one at the
bottom to represent v5

• from the points located near the bottom side of the silhouette, select the one at
the center to represent v1

• from the points located near the left side of the silhouette, select the one at the
top to represent v3

• from the points located near the right side of the silhouette, select the one at the
top to represent v8

The first three points are projected on the 3D scenario and then used to calculate
the position (we consider v1 to be the location), the width and the length of the
cuboid. The only dimension to find out is the height. We create two cuboids, one
located at edge ðv2; v6Þ and the other one on edge ðv5; v6Þ: We project the two
latter points (v3 and v8) and calculate the height as the mean of the values obtained
from these two collisions.
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3.3 Solving Ambiguities

Our framework is capable of working with complex environments with objects
piled on others. A problem can appear when parts of an object are hanging off, as
we could obtain erroneous values when projecting the corners of the bounding box
or the silhouette points. One of the advantages of working with OpenSceneGraph
is the fact that the engine is capable of indicating the object that the ray collides to.
With this information, it is easy to retrieve the height of the different objects
the rays collide and select the highest one (provided the collision happens on top of
the objects; if not, errors may be introduced). This height is then used to locate an
imaginary plane where to perform the calculations of the location and the shape of
the object using the algorithms presented before.

4 Results

In this section we present some results that have been obtained using our augmented
virtuality application, which has been developed using OpenSceneGraph, which is
written entirely in C++ and OpenGL.

We want to start by testing how the accuracy of the detection depends on the
orientation of the object with respect to the camera. Table 1 presents the results
obtained when detecting a stapler which measures 3.67 9 4.55 9 14.4 centime-
ters (width 9 height 9 length) using the silhouette algorithm. In this table we
vary the location and the orientation, being the latter referred to the angle between
the ray that goes through v1 and the edge ðv1; v5Þ:

Firstly, in the results depicted in the first half of Table 1 we vary the angle, and
we can see how the lower the angle is, the higher the accuracy for calculating the
length, as we have less perspective information. Similarly, the higher the angle is,
the higher the precision for calculating the width. It is worth mentioning that,
angles 0$ and 90$ have not been considered as the silhouette algorithm cannot be
applied. Secondly, the results of the second half test the accuracy when the staple
is always oriented at approximately 45$: These results prove how the calculations

Table 1 Results obtained when varying the orientation or the location
Angle(") Real Position (x,y) Calculated position (x,y) Width Height Length

15 50, 25 50.45, 27.23 2.95 4.22 14.07
30 50, 25 51.22, 26.59 3.39 4.09 13.92
45 50, 25 51.02, 25.97 3.86 4.33 13.52
60 50, 25 51.89, 24.45 3.49 4.10 12.93
75 50, 25 49.03, 26.33 3.75 3.78 11.75
45 50, 25 50.46, 24.77 3.81 4.15 13.84
45 50, 40 50.72, 36.98 3.75 3.75 13.72
45 80, 25 82.86, 23.24 4.54 4.14 12.52
45 80, 40 83.72, 39.15 3.27 4.15 12.72
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are more precise when the object is closer to the camera, as the algorithm has more
information on the silhouette.

From a different perspective, Fig. 3 offers a more complex scenario, where the
box and the book are modeled with the silhouette algorithm, while the ball is
modeled using the bounding box as no perspective information can be obtained
from its silhouette. Finally, we must underline that the box has been located in
such a way that some points of the silhouette hang off the book. In this case, as
some rays collide on the book and some on the floor plane, the algorithm selects
the height of the book to locate a plane with which continues the modeling process.

5 Conclusions

In this paper we have presented an augmented virtuality framework based on a
smart camera. We have shown how our approach is capable of locating the objects
on the scenario with high accuracy. This paper offers important improvements
over previous solutions, as it uses the silhouette to better adjust the shape of the
objects. Once the synthetic scene is populated, the user can modify the camera
position and orientation as desired, obtaining new perspectives that can be useful
for surveillance tasks.

As future work, our main line for future work implies extending the vision
algorithms of the SENSE camera to offer features like classification, speed or color
to improve the quality of the simulation performed in the graphics application.
For example, having information on trajectories can enable prediction if there were
delays in the visual feedback loop. From a different perspective, we must say that
the use of a multi-camera framework would imply altering our algorithms but
would definitely improve our simulation.
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Fig. 3 Synthetic environment obtained from a real scenario. a Scenario with three objects
b Image from a different perspective
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