

Proceso ANAMMOX: experiencia presente y perspectivas de futuro

Anuska Mosquera Corral

Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Spain

Valencia, 16 de Octubre de 2019 Cátedra UPV FACSA-FOVASA

The wastewater contains energy which can be recovered

Nitrogen is removed from wastewater by biological processes

Conventional nitrification-denitrification

Partial nitritation-Anammox process

Anammox: Anaerobic AMMonium OXidation

NH₄⁺ + 1,32 NO₂⁻ + 0,066 HCO₃⁻ + 0,13 H⁺

 \rightarrow 1,02 N₂ + 0,26 NO₃⁻ + 0,066 CH₂O_{0,5}N_{0,15} + 2,03 H₂O

Two alternatives are feasible to carry out the partial nitritation-anammox (PN-AMX) processes

A. Mosquera-Corral, F. González, J.L. Campos, R. Méndez. (2005). Process Biochemistry, 40, 3109–3118.

4

PN-AMX processes take place in single stage in granular biomass systems

The structure of the granules allows for an external aerobic and an internal anoxic layer

Vázquez-Padín J.R. et al. (2010). Water Research, 44, 4359-4370.

PN-AMX processes take place simultaneously inside the granular biomass

Dissolved oxygen (DO): $2.2 - 4.6 \text{ mg O}_2/L$

AOR: Ammonium oxidation rate NRR: Nitrogen removal rate NOR: Nitrite oxidation rate

Research at pilot scale was performed to validate the process (2010-2013)

*ELAN[®] process (ELiminación Autótrofa de Nitrógeno): combination of partial nitrification and Anammox in a single reactor.

SBR granular reactors were evaluated by FCC Aqualia

The PN-AMX reactor is placed in the reject line in the WWTP

SBR granular reactors were evaluated in Guillarei

SBR: Sequencing Batch Reactor

Conductivity set-point determines the length of the SBR cycle

SBR granular reactors were evaluated in Guillarei WWTP

Nitrogen Compounds					
NH ₄ influent	mg N/L	850 - 1500			
NH ₄ effluent	mg N/L	63 – 250			
NO ₂ effluent	mg N/L	1-5			
NO ₃ effluent	mg N/L	23 – 102			
Average Nitrogen Removal		82%			
Biomass					
TSS	g/L	12.9			
VSS	g/L	11.8			
SVI	mL/g TSS	36			

The control of the ELAN[®] process is based on conductivity measurements

Parameter	Nitrification- Denitrification	ELAN®	Saves (%)
O ₂ consumption (kg O ₂ /kg N)	3.18	1.83	-42
COD consumption (kg COD/kg N)	4.9	0	-100
Biomass yield (kg VSS/kg N)	2.11	0.12	-94

The ELAN® process is scaled up at full scale

In operation/start up

Design/under construction

Mainstream industrial WWTP

Comparison: Secondary treatment vs. ELAN[®] design

	Biological R. (water line)	ELAN® (sludge line)
Reactor Volume (m ³)	9562	115
N denitrified (kg N/d)	226	67
Ammonium oxidized (kg N/d)	630 (to NO ₃ ⁻)	43 (to NO ₂ -)
O_2 consumption for nitrification (kg O ₂ /d)	2879	148
N removal rate (kg N/(m ³ d))	0.02	0.60
N oxidation rate (kg N/(m ³ d))	0.06	0.37

Water line **83** times bigger than sludge line unit

Water line treates **3.4** times the load of the sludge line

Current ELAN[®] process operation to treat the effluent from an anaerobic sludge co-digester in a WWTP

25 m³ activated sludge (3.5 g TSS/L) + 1.4 m³ of anammox enriched sludge (10 g VSS/L)

5 g VSS/L Oxygen limitation 400 – 700 mg NH₄⁺-N/L

Consorcio de Augas do Louro

Nitrogen removal rates over 350 mg N/(L·d) are achieved

Granular biomass is accumulated in the SBR

Biomass accumulation

The ELAN[®] process to treat the effluent from an anaerobic digester in a fish cannery

Galicia (northwest of Spain):

- Approximately 65 fish canning industries
 - 86% of the total Spanish production
 - 1st region of Europe
 - 3th region in the world

Wastewaters from the fish canning industry:

- High variable composition and salt content 10 g/L
- Surface limitation for the WWTP installation

The ELAN® process will be used to upgrade the fish

cannery

The feasibility of ELAN[®] to treat fish canning effluents was evaluated

- Variable composition
- Salt content

Moving from lab to Full Scale

The feasibility of ELAN[®] to treat fish canning effluents was evaluated

Nitrogen removal successfully achieved in the SBR

Sudden increase of salt concentration reduced the N removal in the SBR

An strategy of salt progressive increase is evaluated

Operational conditions need to be defined to minimize salinity effects

✓ Reduce the nitrogen load applied to compensate for the inhibition.

- \checkmark Use a homogenization tank, helping to mitigate the sharp salt increases.
- ✓ Promote biomass progressive adaptation to increasing salt concentrations.

9 g NaCl/L 100% NH₄⁺ oxidation 70% total nitrogen removal The implementation of the ELAN[®] process in the fish cannery involves several changes

Together with a number of advantages

	Influe	nt	Et	ffluent	\checkmark Achieving the same removal
	g/m³	kg/d	g/m	³ kg/d	
COD	6700	1 818	250	67	100 % of the flow
TN	300	94	40	10	200 % Of the now
	1	With	nout	With	
AD Eff	luent	EL/	٩N®	ELAN [®]	Double methane production
Water Flow	v m³/d	1	35	270	
CH ₄	m³/d	24	45	490	Only 10 % of aerobic volume
	g/m³	kg	/d	kg/d	
COD	670	9	0	181	✓ 98 % sludge reduction
TN	312	4	2	84	
N rem	noval	SBR	(N-DN)	ELAN[®]	85% Less Energy for aeration
Volum	e (m³)	2 5	500	250	V N romoval rate increase by 10
Sludge waste	(kg DS/d)	26	54	3	
N remova	l (kg N/d)	74	l.5	74.5	Positivo Enorgy Balanco:
Energy (kWh/d)	13	340	198	4900 kWh ther vs 200 kWh elect
N remov kg N/(m	val rate ³ d)	0.	03	0.30	OPEX of ELAN [®] system
					expected to be <u>20% lower</u> than conventional N-DN

Two-stage configuration allows to optimize each process separately

The process limited by NOB activity

AOB = Ammonium oxidizing bacteria NOB = Nitrite oxidizing bacteria AMX = Anammox bacteria

NOB are more sensitive to free nitrous acid (FNA) than AOB

Nitritation:
$$NH_4^+ + 2 HCO_3^- + 1.4 O_2 \rightarrow NO_2^-$$

7,4
7,4
7,1
6,8
6,5
6,2
6,2
6,2
5,9
5,6
5,0
0 10 20 30 40 50 60 70 80 90 100
NO₂-N (mg/L)

Anthonisen et al. (1976) Journal Water Pollution Control Federation ; 48, (5), 835-852. Blackburne et al. (2008) Biodegradation; 19:303-312.

Two-stage configuration allows a better NOB suppression and promotes the anammox process

Inoculum: sludge with significant NOB activity Sequencing batch reactor (SBR): 2 L

SBR cycle distribution

Feeding+aeration			
Settling			
Drawing			
Time (min)	158	20	2

Pedrouso et al. (2017) Separation and Purification Technology 186, 55-62.

To succeed the main point is to avoid nitrite oxidizing bacteria (NOB) activity

Complete nitrification

8) 3.4%
3) 3.4%
6) 0.0%

Abundance

Nitrospira (%)

27.4%

• NH_4^+ Inf ONH_4^+ Ef INO_2^- Ef ANO_3^- Ef

Partial nitritation by in-situ FNA accumulation tested with municipal wastewater

PN with primary settled WW adjusts to defined scenarios

Inoculum: sludge without significant NOB activity (Giustinianovich et al. (2018)) Sequencing batch reactor (SBR): 2 L $T = 15 \pm 1$ °C

HRT = 6 h

To maintain the AOB selection

NH₄⁺-N/IC ratio < 0.6 (100% oxidation)

	Stage	Days	Feeding	NH4 ⁺ -N (mg N/L)	рН	N/IC (g/g)	TOC (mg/L)
	I	0 - 137	Synthetic*	50 ± 3	7.70 ± 0.10	0.89 ± 0.02	-
-	II	138 – 182	Sewage	29 ± 5	6.95 ± 0.15	0.80 ± 0.05	40 ± 7
Biomass storage at 4 °C	111	207 - 310	Sewage	45 ± 10	7.20 ± 0.25	0.68 ± 0.08	45 ± 9
	IV	311 - 354	Sewage	20 ± 1	7.01 ± 0.09	0.61 ± 0.02	22 ± 3

Giustinianovich et al. (2018) Chemosphere 194, 131-138.

*Pedrouso et al. (2017) Separation and Purification Technology 186, 55-62.

Partial nitritation established and succesfully maintaned by the in-situ FNA produced

Synthetic feeding

Feeding+aeration			
Settling			
Drawing			
Time (min)	158	20	2

Municipal wastewater

Feeding	60			
Aeration		158		
Settling			20	
Withdrawal				2

Pedrouso et al. (2018) "Simultaneous partial nitritation and organic matter removal in urban wastewater at low temperature" 4th IWA Specialized International Conference, IWA, Ontario, Canada.

Succesful NOB inhibition by FNA in presence of organic matter

Mainstream anammox was operated at laboratory scale

Inoculum: ELAN[®] pilot plant treating reject water Synthetic media Sequencing batch reactor (**SBR**): 5 L

r = 15 ± 1 °C	
----------------------	--

HRT = 24 h

SBR cycle distribution

Feeding				
Mixing				
Settling				
Drawing				
Time (min)	300	30	15	15

AOB AMX AMX AMX

Stage	Days	Alk (mg IC/L)	g NH ₄ +-N/g IC
I	0 - 197	130	0.20
II	198-248	65	0.38
Ш	249-338	30	0.83
IV	338-392	10	2.5

Anammox activity is not affected by exposure time at low temperature

Sampling day	SAA (30 °C) (mg N/(g VSS⋅d))	SAA (15 °C) (mg N/(g VSS⋅d))
0	270 ± 13	53 ± 11
370	200 ± 13	78 ± 8

Nitrogen removal efficiency

Stable anammox process performance treating the effluent of the partial nitritation unit

Partial nitritation and anammox process at pilot scale – Stay research

EDAR Valdebebas (Madrid) 260 000 hab-eq 52 000 m³/d Eliminación de materia orgánica

AquELAN[®]

NOB successfully suppressed at pilot scale

Anammox process was quickly established

Load treated (2 units): 100 g N/m³·d

Variable nitrite conversions are possible depending on the wastewater characteristics

Case	NH ₄ ⁺ -N/IC ratio (g N/g C)	Stream to PN unit (%)	Ammonia oxidized to nitrite (%)	Action required
А	>1.0	100	50	Alkalinity supply
В	0.8-1.0	100	50	None
С	0.6-0.8	50-100	50-100	Bypass to anammox unit
D	<0.6	50	100	Bypass and pH control

Acknowledgements

Improved control and application of nitrogen cycle bacteria for ammonia removal from wastewater (ICON). European Commission (EESD) (EVK1-CT-2000-00054). 01/02/2001 -31/01/2004.

Development of biological reactors for the ANaerobic

AMMonium OXidation (OXANAMON). Ministery of Science and

XUNTA DE GALICIA

Development of clean technologies for the optimization of the design and operation of WWTPs. Galician Government. 08/08/2010-30/09/2013.

Technology (PPQ2002-00771). 01/11/2002 - 31/10/2005.

ITACA project funded by the Spanish Ministry of Economy through the CDTI INNPRONTA program (2011/CE25).

Competitive reference group (GRC 2013-032) funded by FEDER.

 Pioneer_STP - The Potential of Innovative Technologies to Improve Sustainability of Sewage Treatment Plants (PCIN-2015-22 (MINECO) / ID199 (WaterJPI)). April 2016 - May 2019

The performance of PN-AMX processes needs to be assessed for each type of wastewater

anuska.mosquera@usc.es

<u>A. Mosquera Corral</u>¹, A. Val del Río¹, A. Pedrouso¹, J.L. Campos¹, R. Méndez¹ J.R. Vázquez-Padín², N. Morales², R. Fernández-González²

> ¹Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Spain

²Aqualia (FCC Group), Guillarei WWTP, Pontevedra, Spain

Mao N., Ren H., Gen J., Ding L., Xu K. (2017) World J Microbiol Biotechnol, 33:153.