NANOPHOTONICS TECHNOLOGY CENTER

Design and Optimization of Graphene-On-Silicon Nitride Integrated Waveguide Mode Filters

F. Martín-Romero, F. J. Díaz-Fernández and V. J. Gómez Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain. Programa de Doctorado en Telecomunicación. **Email: fmarrom@ntc.upv.es**

We report on the design and optimization of graphene-on-silicon nitride (GOSiN) integrated waveguide mode filters for suppressing the spurious propagation of either TE_0 or TE_1 modes. The integrated waveguide consists of a silicon nitride core partially covered by single layer graphene films. We then compare the efficiency, fabrication tolerance and bandwidth of the devices to those of similar graphene-on-silicon (GOS) integrated waveguide mode filters.

Mode Division Multiplexing (MDM):

- Mode Division Multiplexing increases channel capacity by transmitting higher order waveguide modes.
- Traditional MDM systems suffer from high insertion losses, large device footprints and high costs.
- Promising approach: grapheneon-SiN integrated waveguide mode filters [1]-[3].

 $ER = \alpha_{stop} - \alpha_{pass} \qquad SR = ER/\alpha_{pass}$ $L = C/ER \qquad IL = C/SR$

 α_{stop} : Absorption coefficient of the stop mode

 α_{pass} : Absorption coefficient of the

pass mode
ER: Extinction Ratio
SR: Selection Ratio
C: Contrast

L: Device length *IL*: Insertion Losses

Maximize $\mathbf{ER} \times \mathbf{SR}$

Minimize $L \times IL$

Optimization of the design

Performance of a TE₀ and a TE₁ filter with a SiN waveguide core of W = 1500 nm and H = 200 nm, at $\lambda = 1550$ nm, as a function of the graphene strips width (w_g) and separation (h – vertical, d – horizontal).

TE₀ filter: Better performance than GOS [2]. Less overlapping between modes.

Fabrication tolerance of the TEo filter

If we define the fabrication tolerance of the TE_0 filter as the range of graphene width values in which the $ER \times SR$ product is above 90% of its maximum value, it can be observed that the tolerance for GOS filters is

GOS

Silicon

x (um)

— TE0 — TE1

—— TE0 —— TE1

Generally larger *ER* (shorter device), depending on the geometry.

Much larger SR (lower insertion losses), and much **larger figure of merit** $ER \times SR$ (smaller product of length and insertion losses).

GOSiN

Homogeneous response.

Tunable resonance peak.

Wavelength tuning of GOSiN TE1 filter

If we fix the width and position of graphene in the GOSiN TE₁ filter at w_g =1400 nm and d=1400 nm, we observe that the **resonant** wavelength grows linearly when the core width (W) is increased.

ER*SR (TE₁ filter)

TE₁ filter: wavelength shift

±80 nm, while for GOSiN filters it is +180 nm -200 nm.

Acknowledgements and References

This study forms part of the Advanced Materials programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat Valenciana.

 [1] Wang, J., Zhang, X., Chen, Y., Geng, Y., Du, Y., Li, X., 2021. Optics Communications 481, 126531.
 [2] Xing, P., Ooi, K.J.A., Tan, D.T.H., 2018. Sci Rep 8, 9874.
 [3] Xing, Z., Li, C., Han, Y., Hu, H., Cheng, Z., Wang, J., Liu, T., 2019. Opt. Express, OE 27, 19188–19195.

The proposed graphene-on-SiN integrated devices would allow to selectively filter the TE_0 or the TE_1 mode of a SiN waveguide. They show a wavelength region where the figure of merit is much larger than that of graphene-on-silicon devices, and which in the case of the TE_1 filter consists of a tunable resonant peak.