Maximizing Drone Potential

Automatically adjusting altitude

Take off

Challenges: Terrain altitude can change and lead to collisions

Fast but also safe

Challenges: Sequential too slow Simultaneous prone to collision

Solution: **Calculate collision** Take off in groups

Solution: Control system based on a PID controller

Result: **Responsive control** only 3% increase flight time

Maintaining the formation

Challenges: Disturbances can break the formation

Solution: Synchronization at each waypoint build-in resiliences for failure of drones

Result: Stable formations with almost no time overhead Landing

On a precise location

Challenges: GPS based is not accurate

Solution: Camera based landing guidance algorithm

Formation

preparation for take off

Challenges:

matching the ground with air formation Many combinations are possible

Proposal: 3 algorithms Brute-force Heuristic Kuhn-Munkres (KMA)

Result: KMA is the best option **Result**: Precise landing (+ 18cm)

Future works

Smart agriculture

management

Network infrastructure

Published research

Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition

A need for a:

Open-source simulator Multi-UAV Accurate Deployable on real UAVs

Highly scalable Real-time **Distributed system** Fast deployment **Communication models** Flexible

Results:

Collision-free swarm take-off based on trajectory analysis and UAV grouping

Improving UAV Mission Quality and Safety through Topographic Awareness

Distributed management and coordination of UAV swarms based on infrastructureless wireless networks

Author: Jamie wubben

Directors: Carlos T. Calafate, Juan-Carlos Cano

Program: PhD in informatics

