CO, ADSORPTION ON ZEOLITE SSZ-45

ALBERTO BARROS PARDO,^a Fernando Rey,^a Susana Valencia,^a José Valero Jiménez

Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), 46022 Valencia (Spain)

Introduction

High-silica small-pore zeolites are of particular interest for the gas separations, because they combine a fine molecular sieving and high thermal stability.¹ The high silica SSZ-45 has been recently synthesized using N-cyclopentyldiazabiciclooctane as the structure direct agent (SDA).

STRUCTURE

Pore system: 1D – 8R Chanels with large side pockets

Cell parameters: Å b = 35.7450 Å c = 22.4869 Å a = 13.8761 $\alpha = 90.000^{\circ}$ β = 90.000° $\gamma = 90.000^{\circ}$

Experimental

This material was synthetized following the procedure reported.¹

The textural properties of SSZ-45 were determined by measurement of CO₂ and N₂ adsorption isotherms at low pressure. In addition, the CO₂ adsorption was studied at high pressure on SSZ-45 using an ISORB instrument at different temperatures (273, 283, 298, 313 and 333 K).

Surface area and pore volume

Dubinin-Astakhov (DA) $log_{10}V = log_{10}V_o - Dlog_{10}^{2} {P_o/P}$

Brunauer-Emmett-Teller (BET) $C_{BET} -$

Halsey equation

Specific Surface _{DA}	Micropore volume _{DA}
(m ² /g)	(cm ³ /g)
767	0,18

Specific Surface _{BET} (m ² /g)	Micropore volume _{t-plot} (cm ³ /g)	
89	0,018	

HEAT OF ADSORPTION

The isosteric heat of CO₂ adsorption (Q_{st}) on zeolite SSZ-45 was determined by applying the Clausius-Clapeyron's equation to the CO_2 isosteres.

The isotherms calculated using a viral type fitting to the experimental data fit them with a correlation coefficient better than 0.99. This allows the calculation of the isosteric heat in a wide range of CO₂ coverage. Results around 26 kJ/mol are obtained.

By extrapolation at $Q_{st,0}$ it is possible to obtain the isosteric heat of adsorption at zero coverage (22,7 kJ/mol)

Acknowledgments

Authors thank the Spanish Ministry of Science, Innovation and Universities (CEX2021-001230-S grant funded by MCIN/AEI/10.13039/501100011033 and TED2021-130191B-C41 grant funded by MCIN/AEI/ 10.13039/501100011033 and by "ERDF A way of making Europe" by the European Union NextGenerationEU/PRTR) and Generalitat Valenciana (Prometeo/2021/077) for their funding. A. B. thanks the grant PROMETEO/2021/077-02. The Microscopy Service of UPV is acknowledged for their help in sample characterization.

References

[1] S. Smeets, D. Xie, L. B. McCusker, Chem. Mater. 2014, 26, 3909-3913.

CONCLUSIONS

Textural properties can not be properly determined by N₂ adsorption at 77K due to diffusional restrictions of N₂ to access the porosity, but it is possible with CO₂ adsorption at 273K. The isosteric heat of CO₂ adsorption calculated from the high pressure isotherms gives values around 26 kJ/mol, typically observed in high silica zeolites.

2023-2026

