

Effect of the ambient gas properties on the diesel spray tip penetration and spreading angle

Author: Tomas Montiel Prieto

Tutor: Raúl Payri

Programa de Doctorado en Sistemas Propulsivos en Medios de Transporte

Introduction

Results

- Experimental measurements are crucial to validate CFD models.
- Study the influence of the ambient gas on the spray

anys

- To observe these effects, the spray penetration and spreading angle were analyzed under a wide range of injection pressures and ambient densities.
- Three ambient gases : SF_6 , CO_2 , N_2 .

Objectives

- Measure spray tip penetration and spreading angle for parametric variations of the boundary conditions.
- Analyze the influence of the ambient gas in the spray development.
- Compare the spray penetration of each ambient gas.

Methodology

Conclusions

- At same ambient densities spray penetration grew faster within the SF6 atmosphere than the others $(CO_2 \text{ and } N_2)$ and had smaller spray spreading angle.
- Shock-waves appearances was pointed out as the possible explanation. In this sense, the initially compressed gas behind the shock would expand as the spray develops, creating a depression zone which enhances the spray penetration.
- Sprays tip near transonic or in supersonic state (M > 0.8) had a faster penetration rate than those in

Figure 4. Definition of the macroscopic variables of the spray.

the subsonic state.

- Spray penetration under different ambient gases (SF₆ and CO₂) in the transonic or supersonic state was compared. Sprays under SF₆ atmosphere had a faster penetration than those under CO₂ atmosphere.
- Differently, spray penetration under different ambient gases (CO₂ and N₂) in the subsonic state was compared and no significant differences were observed, regardless of the difference in Mach number values.
- Statistical analysis showed that spray under supersonic or transonic state had a faster penetration in time, compared to the theoretical penetration correlation.

Articles Published:

(1) "Effect of high injection pressures and ambient gas properties over the macroscopic characteristics of the diesel spray on multi-hole nozzle", Atomization and Sprays, 2018, Vol.28(12), pp. 1145-1160. DOI: 10.1615/AtomizSpr.2019029651. **References:**

(1) "Experimental investigation of effects of super high injection pressure on diesel spray and induced shock waves characteristics, Experimental Thermal and Fluid Science, 2017, Vol. 85, pp- 399-408. DOI: 10.1016/j.expthermflusci.2017.03.026.