Transient flow simulations of Gasoline Direct injection (GDi) nozzles: nozzle flow and sprays anys

Author: María Martínez García

Advisor: Dr. Pedro Martí Gómez-Aldaraví

motores térmicos

40 years 1979 - 2019

Ph.D Programme in Transport Propulsion Systems

CMT-Motores Térmicos

1.- Objectives

Internal nozzle flow characterization. Analysis of the flow structure and the phenomena during the injection process.

External flow analysis. Eulerian-Lagrangian approach focus on mixing and atomization.

2.- CFD Methodology

IVERSITA7

POLITÈCNICA DE VALÈNCIA

Internal Flow Analysis

X-Ray geometry

3.- Internal Nozzle Flow Results

Transient Needle Lift Simulation

Finished publications

5.- Conclusions & Future Work

- The plume direction is well captured by the in-house post-processing code. The spray direction differs from the geometrical axis of the hole. The lack of experimental measurements does not allow to validate the spray cone angle results.
- Eulerian approximations adequately predict the liquid penetration in the first millimeters of the injector exit. The simulation with a fixed needle lift has a faster response than the transient simulations.
- There is an overestimation of about 5% in the internal nozzle flow calculations. This overrrating compensates the deficiencies in the Eulerian-Lagrangian approach and reduces the errors. More experimental and numerical investigation is needed to understand the spray behavior.

[1] Payri, R. et al. (2019). Nozzle Flow Simulation of GDi for Measuring Near-Field Spray Angle and Plume Direction. SAE Technical Paper 2019-01-0280, 1–11. [2] Shahangian, N. et al. (2019). One-way Coupling Methodology of Nozzle Flow and Spray for a Multi-Hole GDi Injector. SAE Technical Paper 19ICENA-0244. (Accepted article) [3] Payri, R. et al. GDi Nozzle Flow Transient Simulations. (Under internal revision to be submitted to Energy Conversion and Management) [4] Mohapatra, C. et al. Collaborative Investigation of the Internal Flow and Near-nozzle Flow of a 8-Hole Gasoline Injector (ECN Spray G). (Submitted to International Journal of Engine Research)