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Motivation

The quantification of uncertainty in dynamic models is currently playing an important role in many applied areas. Classical deterministic differential equations, which have
demonstrated to be powerful tools for analysing problems that appear in areas such as Physics, Engineering, Chemistry, Epidemiology, etc., need to consider randomness
in their formulation in order to account for measurement errors and inherent complexity of problems under study. It has motivated the development of two main classes
of differential equations dealing with uncertainty, namely, random differential equations (r.d.e.'s) and stochastic differential equations (s.d.e.'s). R.d.e.’s are those in which
random effects are directly manifested in its inputs parameters (initial/boundary conditions, source term and coefficients). These inputs are assumed to satisfy reqularity
properties such as continuity, differentiability, etc., in some adequate stochastic sense such as mean square calculus (see [1]). A major advantage of considering r.d.e.’s is
that a wide range of probabilistic distributions can be assigned to its inputs including Exponential, Gaussian, Beta, etc, distributions. As a consequence, r.d.e’s provide
great flexibility in dealing with real models.
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R.d.e.'s and the Liouville-Gibbs equation The Gompertz model
Let us consider the following initial value problem (IVP): We will apply this method to solve the randomized Gompertz model used
FY’(t) — F(t,Y(t)), t> o, ) to study the time evolutlon of cancer cells, given by the following IVP

where F = (F;,...,F,) : | x R" — R" is a deterministic C'(/ x R") function, /| C R is a N 0) - NO’

non-trivial interval, with tg € 1, Y(t) = (Y4(t),..., Y,(t)) and Yq is a random variable with a where Ny, B, C > 0 are random variables whose joint PDF po(no, b, ¢) is

known PDF po(y). Also the derivative is considered in the m.s. sense (see [Ch. 4, 1]). The assumed known. The random variable Ny denotes the size ot the tumor

characteristic function of the stochastic process Y(t) for a fixed time t is in cm?, B represents the cell division rate and C = B —p, > 0 represents
the difference between the cell division rate (B) y and the cell death rate

ot u) = [eiuTY(t)] _ E[ (g ukYidt) ] _ / “yp (¢, y)dy, (1) Its corresponding Liouville-Gibbs equation is the following
" dp(t,n,b,c) d(nlc—Dbln(n)p(t,n,b,c
where p(t,y) denotes th first |:)|oba|:)llitg density function (1-PDF) of Y(t). Now, let us i 5 ) | Ul (0/1]/( ) =0, Vt > t, (8)
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calculate the partial derivative —=(t, u) in two different ways. On the one hand, using that b(to, n, b, c) = po(n, b, ).

m.s. limits and the expectation opelat0| commute (|1, Thm. 4.2.1]) , L
And its solution is
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where F is the Fourier transform for L'(R) functions.

Now, we will show the graphical output of a numerical simulation of the

On the other hand, using differentiation under the integral sign we get , ,
Compertz model using the following parameters:

do(t, u uTeOpP(t, L ap(t, ¢
Pl - / e™'v ( J)dg =J P! J)] (u). (3) e We consider Ny as a normal distribution truncated in the [0,1] interval

dt dt dt
with p = 0.0035, ¢ = 0.001.
Finally, using the inverse Fourier transform, we obtain the Liouville-Gibbs equation
e For B, C we use the following uniform distributions: B ~ Un[0.12,0.13]

dp(t, L
/gt y) _ Za (Fe(t, u)p(t,u)) = 0. (4) and C ~ Un[0, 0.003]
L : : : :
Ik In Figure [1) we can see the 1-PDF of the solution stochastic process in
This equation can be written in terms of the divergence operator using as initial condition three different values of t, measured in days.

the PDF of Yy, which is assumed to be known:
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where Sy denotes the interior of the support of pg which we will suppose is a smooth “ '*
hLJpersurface. Fig. 1: Left:t =0, Middle: t =1 and Right: t = 2.

Figure 2 shows the mean of the solution stochastic process with a 95%
It can be proved that this IVP has a unique solution ([2, Thm. 1.10]). Furthermore, using the confidence interval.

method of characteristics we can find its analytical solution, which is, using the notation

in [1, Eq. 6.60], the following )
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p(t.y) = (polwo)exp {= [V, Flry=hirode )| ©

\ t yo=h~"(t.y)
That is, by solving the IVP (1), we obtain a solution given by Y(t) = h(t, Yg). Solving this last 003} |7 EiNMRL8TVIND
equation for Y gives an expression Yo = h™'(t,Y), which is what we use in the equation (). | gzﬁg R
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