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Motivation

The quantification of uncertainty in dynamic models is currently playing an important role in many applied areas. Classical deterministic differential equations, which have
demonstrated to be powerful tools for analysing problems that appear in areas such as Physics, Engineering, Chemistry, Epidemiology, etc., need to consider randomness
in their formulation in order to account for measurement errors and inherent complexity of problems under study. It has motivated the development of two main classes
of differential equations dealing with uncertainty, namely, random differential equations (r.d.e.’s) and stochastic differential equations (s.d.e.’s). R.d.e.’s are those in which
random effects are directly manifested in its inputs parameters (initial/boundary conditions, source term and coefficients). These inputs are assumed to satisfy regularity
properties such as continuity, differentiability, etc., in some adequate stochastic sense such as mean square calculus (see [1]). A major advantage of considering r.d.e.’s is
that a wide range of probabilistic distributions can be assigned to its inputs including Exponential, Gaussian, Beta, etc, distributions. As a consequence, r.d.e.’s provide
great flexibility in dealing with real models.

R.d.e.’s and the Liouville-Gibbs equation

Let us consider the following initial value problem (IVP):{
Y′(t) = F(t,Y(t)), t > t0,
Y(t0) = Y0,

(1)

where F = (F1, . . . , Fn) : I × Rn −→ Rn is a deterministic C 1(I × Rn) function, I ⊂ R is a
non-trivial interval, with t0 ∈ I , Y(t) = (Y1(t), . . . , Yn(t)) and Y0 is a random variable with a
known PDF p0(y). Also the derivative is considered in the m.s. sense (see [Ch. 4, 1]). The
characteristic function of the stochastic process Y(t) for a fixed time t is

φ(t,u) = E
[
eiuTY(t)

]
= E

[
ei
∑n

k=1 ukYk(t)
]

=
∫

Rn
eiuTyp(t,y)dy,

where p(t,y) denotes th first probability density function (1-PDF) of Y (t). Now, let us
calculate the partial derivative ∂φY(t)

∂t (t, u) in two different ways. On the one hand, using that
m.s. limits and the expectation operator commute ([1, Thm. 4.2.1])

∂φ(t,u)
∂t = ∂

∂tE
[
ei
∑n

k=1 ukYk(t)
]

= E
[
i
n∑

k=1
ukY ′k(t)eiu

TY(t)

]
= i

n∑

k=1
ukE[Y ′k(t)eiu

TY(t)]

= i
n∑

k=1
ukE[Fk(t,Y(t))eiuTY(t)] = i

n∑

k=1
uk
∫

Rn
eiuTyFk(t,y)p(t,y)dy.

Using the linearity of the Fourier transform,

∂φ(t,u)
∂t = F

[
−

n∑

k=1

∂
∂yk

(Fk(t,y)p(t,y))
]

(u), (2)

where F is the Fourier transform for L1(R) functions.

On the other hand, using differentiation under the integral sign we get
∂φ(t,u)
∂t =

∫

Rn
eiuTy∂p(t,y)

∂t dy = F
[
∂p(t,y)
∂t

]
(u). (3)

Finally, using the inverse Fourier transform, we obtain the Liouville-Gibbs equation
∂p(t,y)
∂t +

n∑

k=1

∂
∂yk

(Fk(t,y)p(t,y)) = 0. (4)

This equation can be written in terms of the divergence operator using as initial condition
the PDF of Y0, which is assumed to be known:





∂p(t,y)
∂t +

n∑

k=1
Fk(t,y)∂p(t,y)

∂yk
= −p(t,y)∇y · F(t,y), t > 0,

p(0,y) = p0(y), ∀y ∈ S0,
(5)

where S0 denotes the interior of the support of p0 which we will suppose is a smooth
hypersurface.

It can be proved that this IVP has a unique solution ([2, Thm. 1.10]). Furthermore, using the
method of characteristics we can find its analytical solution, which is, using the notation
in [1, Eq. 6.60], the following

p(t,y) =
(
p0(y0) exp

{
−
∫ t

t0
∇y · F(τ,y = h(τ,y0))dτ

}) ∣∣∣
y0=h−1(t,y)

. (6)

That is, by solving the IVP (1), we obtain a solution given by Y(t) = h(t,Y0). Solving this last
equation for Y0 gives an expression Y0 = h−1(t,Y), which is what we use in the equation (6).
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The Gompertz model

We will apply this method to solve the randomized Gompertz model used
to study the time evolution of cancer cells, given by the following IVP{

N ′(t) = N(t)[C − B ln(N(t))], t > 0,
N(t0) = N0,

(7)

where N0, B, C > 0 are random variables whose joint PDF p0(n0, b, c) is
assumed known. The random variable N0 denotes the size of the tumor
in cm3, B represents the cell division rate and C = B−µp > 0 represents
the difference between the cell division rate (B) y and the cell death rate
(µp). Its corresponding Liouville-Gibbs equation is the following





∂p(t, n, b, c)
∂t + ∂(n[c − b ln(n)]p(t, n, b, c))

∂n = 0, ∀t > t0,
p(t0, n, b, c) = p0(n, b, c).

(8)

And its solution is
p(t, n) =

∫

R

∫

R
pN0(ne

b(t−t0)e−c/b(eb(t−t0)−1))pB(b)pC (c)eη(t,n,b,c)dbdc.

where

η(t, n, b, c) = b(t − t0) + c
b
(
eb(t−t0) − 1

)
+ cteb(t−t0)

−
(
eb(−t+t0)(1 + bt)− 1

)
ln
[
e−

c(−1+eb(t−t0))
b neb(t−t0)

]

+ bt ln



e−
c(−1+eb(−t+t0))

b

(
e−

c(−1+eb(t−t0))
b neb(t−t0)

)eb(−t+t0)

 .

Now, we will show the graphical output of a numerical simulation of the
Gompertz model using the following parameters:
•We consider N0 as a normal distribution truncated in the [0,1] interval

with µ = 0.0035, σ = 0.001.
•For B,C we use the following uniform distributions: B ∼ Un[0.12, 0.13]

and C ∼ Un[0, 0.003].
In Figure 1 we can see the 1-PDF of the solution stochastic process in
three different values of t, measured in days.

Fig. 1: Left:t = 0, Middle: t = 1 and Right: t = 2.

Figure 2 shows the mean of the solution stochastic process with a 95%
confidence interval.

Fig. 2: Simulation of the mean (solid line) and a 95% confidence intrval (dashed lines) for the Gompertz

model.


