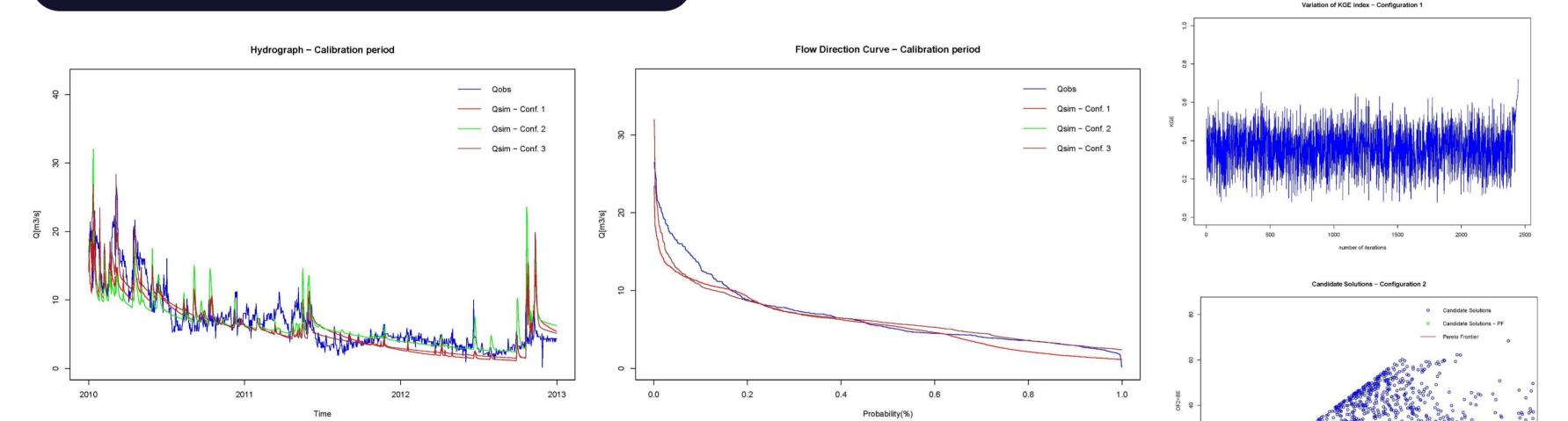

On the use of satellite soil moisture data in spatio-temporal model calibration for a Mediterranean catchment.

C. Echeverría⁽¹⁾ (carec@doctor.upv.es), G. Ruiz-Pérez^(1,2) (guiomar.ruiz.perez@slu.se), and F. Francés⁽¹⁾ (ffrances@upv.es) (1) Research Group of Hydrological and Environmental Modelling (GIHMA), Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Valencia, Spain (2) Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden



CALIBRATION APPROACHES

Configuration 1 -> Mono-objective calibration using SCE-UA -> Main state variable: Flow at the catchment outlet point (Q) -> Objective-function: Kling-Gupta Efficiency (KGE)	Common characteristics -> Warm-up period: 2008-2009 -> Calibration period: 2010-2012 -> Validation period: 2013-2015	
Configuration 2 -> Multi-objective calibration using MOSCEM-UA -> Main state variable: Flow at the catchment outlet point (Q) -> Objective-functions: Kling-Gupta Efficiency (KGE) and Balance Error (BE)	 > 24 parameters (9 hydrological and 15 vegetation) **STE -> It is a function to evaluate the performance of the simulated soil moisture compared to the observed soil moisture, composed by two parts: KGE index between simulated and observed soil moisture pixel by pixel 	
Configuration 3 -> Multi-objective calibration using MOSCEM-UA -> State variable: Flow at the catchment outlet point (Q) and remote-sensed soil moisture (SM). -> Objective-functions: Kling-Gupta Efficiency (KGE) and Spatial function to evaluate soil moisture (SME**).	2) a metric based on the similarity between the first five spatial principal components of simulated and observed soil moisture (EOF methodology); $STE = \frac{P_1 + P_2}{2}$ $P_1 = \frac{\sum_{np=1}^{\#pixels}[KGE(sm_{obs}\&sm_{sim}; \forall KGE \ge threshold)]}{total number of pixels}$ $P_2 = \frac{\sum_{pc=1}^{5}[KGE(EOF - loadings_{obs} \& EOF - loadings_{sim})]}{5}$	

RESULTS

Flow Direction Curve - Validation period

Table 1. Performance of metrics for the three approaches in calibration and validation periods

	Configuration 1	Configuration 2	Configuration 3	
Calibration type	Mono-Objective	Multi-Objective	Multi-Objective	
Objective-Function 1	Objective-Function 1 KGE		KGE	
Objective-Function 2 -		BE	SME	
State Variable	Q	۵/۵	Q/SM	
State Variable Type	Temporal	Temporal/Temporal	Temporal/Spatio-Temporal	

	Calibration resultsKGE=0.7187Validation resultsKGE=0.1011		KGE=0.7675 BE=8.3444	KGE=0.8889 SME=0.6339
			KGE=0.3182 BE=30.60	KGE=0.5168 SME=0.5836
	Result variations	ΔKGE=0.6176 (-)	ΔKGE=0.4493(-) ΔBE=22.2556(+)	ΔKGE=0.3721(-) ΔSME=0.0503(-)

Table 2. Characteristics of the three calibration confiau

Calibration period (01/01/2010 - 31/12/2012

Configuration

26.491

23.4401

08/03/2010

14/01/2010

53

698502

606136.2

16.1635

12.333

5.218

5.5349

Configuration 2

26.491

32.0023

08/03/2010

13/01/2010

54

698502

673262.8

16.1635

12.77165

5.218

5.8498

Characteristic

Maximum observed discharge [m3/s

Maximum simulated discharge [m3/s]

Observed peak time

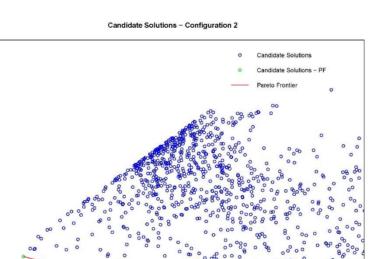
Simulated peak time

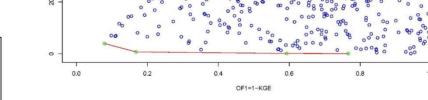
Peak time error

Observed volume [Hm3]

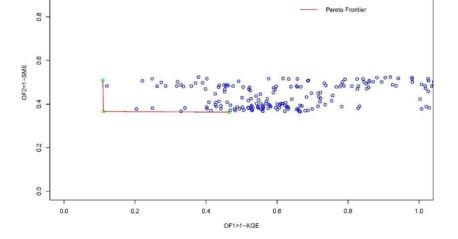
imulated volume [Hm3]

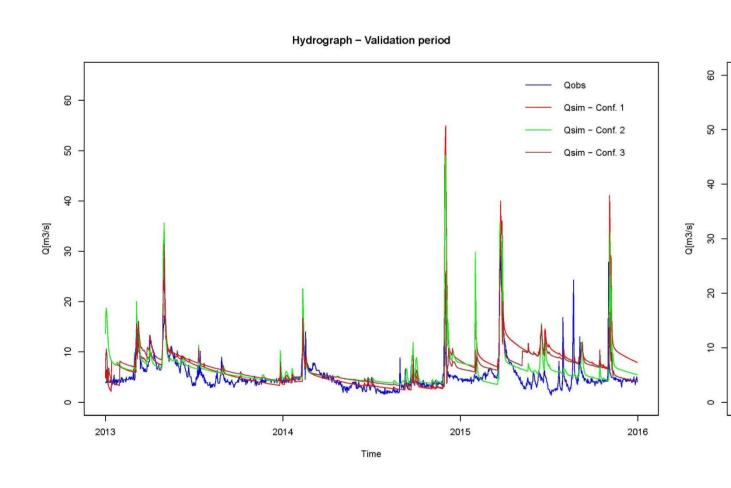
Observed Q95


Simulated Q95


Observed Q50

Simulated Q50


Table 3. Characteristics of the three calibration configurations for validation period


	Validation period (01/01/2013 - 31/12/2015)				
guration 3	Characteristic	Configuration 1	Configuration 2	Configuration 3	
6.491	Maximum observed discharge [m3/s]	34.206	34.206	34.206	
8.325	Maximum simulated discharge [m3/s]	54.9366	49.1602	33.4437	
03/2010	Observed peak time	25/03/2015	25/03/2015	25/03/2015	
03/2010	Simulated peak time	03/12/2014	05/12/2014	26/03/2015	
1	Peak time error	112	110	-1	
98502	Observed volume [Hm3]	530081.1	530081.1	530081.1	
9267.3	Simulated volume [Hm3]	756652.4	692070.8	707673.8	
5.1635	Observed Q95	10.0714	10.0714	10.0714	
.56495	Simulated Q95	12.682	11.88539	10.91004	
5.218	Observed Q50	4.412	4.412	4.412	
.0376	Simulated Q50	7.0652	5.797	6.5004	

CONCLUSIONS

I. Multi-objective approaches (configurations two and three) lead to better model performance. Graphically is possible to support this phrase by the hydrographs and Flow Direction Curves. In Table 2 and Table 3 is also possible to visualize closer values to observed data of Q95, Q50, maximum discharge and accumulated volume.

II. The visualization of the Pareto set allows to identify whether all objective functions can be

ACKNOWLEDGEMENTS

The research leading to these results has received funding by the Spanish Ministry of Economy and Competitiveness through the TETISMED project (CGL2014-58127-C3-3-R). and from the Paraguayan government by its funding for research program called BECAL.

The satellite soil moisture data were obtained through the BEC-SMOS website (<u>http://bec.icm.csic.es/</u>)

The meteorological data were provided by the Spanish National Weather Agency (AEMET) and the Agroclimatic Information System for Irrigation (SIAR).

simultaneously optimized and pinpoints the optimal set of parameters, assisting thus the decision making process.

III. The differences among the three approaches are more evident during the validation period, pointing out that the use of multiple objective functions leads to more realistic parameter values.

IV.Even though challenging, spatio-temporal data, in particular soil moisture, must be explored as relevant source of information to calibrate process-based models in future applications

V. The SMOS/MODIS remote-sensed fine-scale soil moisture data is consistent with observed discharge and the combination of both shows the best results(Table 1).

REFERENCES

[1] G. Ruiz-Pérez, J. Koch, S. Manfreda, K. Caylor and F. Francés. Hydrol. Earth Syst. Sci., 21, 6235-6251, 2017

[2] D. Finger, M. Vis, M. Huss and J. Seibert. (2015) Water Resources Research, 51, 1939-1958, 2015

[3] GIMHA. 2018. Description of the distributed conceptual hydrological model TETIS v.9.0.1. Universitat Politècnica de València.

ilama Instituto de Ingeniería del Agua y Medio Ambiente

MINISTERIO **DE ECONOMIA Y COMPETITIVIDAD**