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1. We have developed MultiBaC, a strategy to remove batch effect between different omic data types coming from different studies.
2. MultiBaC approach reaches almost the same performance as ARSyN method which is the maximum level of correction, when both can be applied.
3. When there is a no common omic MultiBaC is able to correct  low and moderate batch effect magnitudes.
4. MultiBaC does not work well with high batch effect and interaction magnitudes but these so high  magnitudes have not been seen in real datasets.

A) Minimum size problem example.
At least one omic data type is
shared between two laboratories.

B) Method scheme. 1- A PLS model
for each laboratory is built
explaining non-common omic by
the common one. 2- For each
laboratory the omic they have not
originally is predicted. 3- ARSyN
correction is now possible for each
omic data type.

Omics technologies have expanded in diversity in the last years and the number of omics integration analysis possibilities has also increased. However, the costs of the different techniques are still high
and most of research groups cannot afford research projects where many different omics techniques are analyzed. Nevertheless, as most research share their data in public repositories, there is a
possibility of utilization of datasets from other laboratories to construct a multiomic study. An important issue when we want to integrate data from different studies is the batch effect. There are already
several methods described which are able to correct batch effect on common omic data between different studies (e.g. ARSyN from M.J. Nueda et al., 2012) but they cannot be used to correct no
common data (i.e. the omic data modality that has been analyzed at only one lab). We have developed MultiBaC, a strategy to correct batch effect on no common omic information which let us integrate
different omic data types from different studies.

MultiBaC (Multi-omic Batch Correction) method
A B

With simulated data With real data

o Measures of similarity between original simulation (no batch effect) and corrected matrices:
· R2: Latent structure.
· FDR, Sensitivity and Specificity: Differences in significant differentially expressed genes.

o MultiBaC reaches the best performance in comparison with TSR and JY-PLS.
o Real batch effects are not supposed to be as high as maximum magnitudes tested, so MultiBaC is

suitable for real cases of batch effect.

o PCAs showing sources of variability.
o MultiBaC correction is not as perfect as ARSyN one but after MultiBaC correction the batch is not an

important source of variability. ARSyN result is the maximum level of correction and MultiBaC
reaches almost the same result.
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Batch effect simulation is needed. We 
obtain a real-like dataset.
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Evaluated methods : MultiBaC, TSR and JY-PLS
Trimmed Scores
Regression (TSR)

(Folch-Fortuny et al., 2017)

TSR is a missing data 
imputation method.

Joint-Y PLS (JY-PLS)
(García Muñoz et al., 2005)

Product transfer method. X.1 and 
X.2 are ‘Y’ matrices in JY-PLS and 
they must share latent structure.

o Data design
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o Modified data design
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o GRO-seq is being treated as no common
data.

o MultiBaC is compared with ARSyN correction
which is the standard method when omics
are present in both labs.

o ARSyN result is the maximum objective for
MultiBaC approach.
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