
Speeding-up Simulation-based Fault Injection

for Highly Complex HDL Models
PhD. Student: Ilya Tuzov

Collaborators and Supervisors: Juan-Carlos Ruiz, David de Andrés and Pedro Gil

Doctoral Program in Computer Science

ITACA, {tuil, jcruizg, ddandres, pgil}@disca.upv.es

1. Motivation and objectives

Abstract ─ Increasing integration scales and clock frequencies also increase the sensitivity of integrated circuits to different kinds of faults. Early

design verification in presence of faults and dependability assessment is commonly accomplished by means of Simulation-based fault injection (SBFI)

techniques, which can be applied at different levels of HDL description. The closer to implementation models are, the more representative are simulation

results. However, injecting faults in highly complex and detailed models is a very resource-intensive process that usually requires prohibitive simulation

times. This work proposes an approach to speed up this process, making feasible the dependability assessment of very detailed implementation-level

HDL models.

3. Proposed optimizations and expected speed-up 4. Experimental speed-up versus estimation

Table 1. Experimentation time measured with respect to enabled optimizations

1. Mixed-Level HDL assembly - reduces computational complexity of HDL model

3. Multiprocessing - execute N

experiments in Proc processes in

parallel on Grid or Mutlicore-based

computing systems

4. Fine tuning of sampling

procedure – observation traces are

optimized for minimal size by

adjusting sampling triggering

conditions to particular workload.

Accuracy of sensitivity analysis is

maintained.

Figure 5. Expected and experimentally obtained speed-up factor (logarithmic scale)

• Global speed-up factor: 5047 (SMLA×SICP×SWCP×SMP)

• Storage space reduction factor: 1387 + tracing speed-up of 1,36.

• No major discrepancies in SBFI results between implementation- and mixed-

level models (less than 2% difference for all fault models and failure modes).

Figure 3. Checkpoints reduce the simulation time

to just fault injection and effects observation

Target model – LEON3 soft-core processor synthesized for Virtex-6 FPGA.

Workload – integer matrix multiplication (MiBench automotive benchmark)

Faultload – single transient (bit-flip) and permanent (stuck-at-/0) faults.

Computing platforms:

a) Cluster ‘Rigel’ (UPV): 72 nodes Xeon E5-2450, CentOS 6, Sun Grid Engine;

b) Multicore PC: Intel Core i5-4670, CentOS 6.7.

Simulator: Mentor Graphics ModelSim 10.4 in both environments.

2. Factors affecting complexity of faults simulation

Figure 1. Simulation time growth

drastically with the increase of

model accuracy along the semi-

custom design flow

• Hardware designs must be verified in

presence of faults, caused by internal

and/or environmental factors, e.g.

single-event effects (SEE). Sensitivity

to faults should be estimated to ensure

device’s safe behavior.

• Faults effects can be representatively

simulated by means of implementation-

level HDL models, which accurately

reflect functional/timing behavior and

the structure of resulting circuit.

• Simulation of implementation-level

models is up to 4 orders of magnitude

slower than of source RTL (behavioral)

models, resulting in prohibitive SBFI

experimentation time in practice.

accuracy

relative simulation
time (effort)

Behavioral
cycle-accurate

post-
Place&Route

RTL

post-
synthesis

post-map

Circuit at gate-
level

Technology-
accurate

Accurate
technology and

timing

~1

~10
2

~10
3

generic libraries

Implementation-level vendor-
specific libraries

source code

Objectives:

• Analyze the factors affecting simulation complexity at implementation-level

• Optimize fault simulation procedures with the aim for speed-up to enable

sensitivity analysis/dependability assessment for complex HDL designs.

𝑺𝑴𝑷 =
𝑵 × (𝑻𝒊𝒏𝒊𝒕 + 𝑻𝒆𝒙𝒆𝒄)

𝑻𝒊𝒏𝒊𝒕 +
𝑵

𝑷𝒓𝒐𝒄
× 𝑻𝒆𝒙𝒆𝒄

 Optimizations Execution time

Config. ICP MLA WCP Multicore Grid

Single
experiment

Tavg (seconds)

Standard
deviation

σ

Whole
campaign

Ttotal (hours)

C1 − − − − − 7327 11.0 15896#
C2 + − − − − 113 14.9 246.8*
C3 + + − − − 40 2.2 87.7*
C4 + + + − − 27 3.8 59.5*
C5 + + + + − 30 5.8 22.7
C6 + − + + − 79 15.7 59.1

C7 + + + − + 43 10.9 3.0

C8 + − + − + 114 28.0 5.7

Estimation based on 10 injection experiments

* Estimation based on 500 injection experiments

CPI/CPW – initialization / workload checkpoints, MLA – mixed-level assembly

Conclusions: Proposed optimizations greatly accelerated the execution of fault simulation experiments and reduced the required storage space without

any loss in accuracy of results, supporting the stated hypotheses and expressions for speed-up factors. Latter could be used to estimate the efficiency of

each optimization depending on the properties of particular HDL model, workload and computing resources. This enabled extensive SBFI campaigns for

complex implementation-level models, required (among other applications) for the ongoing study of design space exploration for HW design.

Acknowledgment: This work has been partially funded by the Ministerio de Economía, Industria y Competitividad de España under grant agreement no

TIN2016-81075-R, and the “Programa de Ayudas de Investigación y Desarrollo” (PAID) de la Universitat Politècnica de València.

Testbench

Target unit at

implementation-

level

Implementation-level netlist

design root

.VHD / .V

.SDF (timing)

NT_I αT_I

NE_RT αE_RT

+ delays

NE_I αE_I

Rest of the design

at RTL

2. Checkpoints – save/restore pre-computed simulation state to bypass model

initialization and reduce the workload execution in each of N experiments

Figure 2. Target unit at implementation level

interacts with high-level model of the rest of design

SBFI complexity

Micro-level (single experiment)

Macro-level (SBFI campaign)

Number of signals (simulation primitives) N

Number of scheduled events per time unit

Switching activity α
Simulated model time (workload complexity)

Model initialization Tinit

Experiment execution Texec (incl. injection and observation)

Tracing complexity

Types and number of observed signals and variables

Sampling conditions and switching activity

Faultload complexity

Number of targeted nodes

Number of injections per fault model per node

Complexity of sensitivity analysis

Computed metrics (algorithmic complexity)

Size of observation traces (amount of samples)

Expected speed-up factor

to be verified experimentally

𝑺𝑴𝑳𝑨 =
𝑵𝑻_𝑰 × 𝜶𝑻_𝑰 +𝑵𝑬_𝑰 × 𝜶𝑬_𝑰
𝑵𝑻_𝑰 × 𝜶𝑻_𝑰 +𝑵𝑬_𝑹𝑻 × 𝜶𝑬_𝑹𝑻

𝑺𝒘𝒄𝒑 =
𝑵 × (𝑻𝒊𝒏𝒊𝒕+𝑻𝒆𝒙𝒆𝒄)

𝑻𝒊𝒏𝒊𝒕 + 𝒊=𝟎
𝑵−𝟏𝑻𝒆𝒙𝒆𝒄_𝒊

Figure 4. Grid- and multicore-based SBFI flow

fault_[N-1].do

...

fault_00000.do

injection
scripts

Requested Resources

Executable scripts

+ Link

shell script for grid engine

T0T1...Ti-1

Queue of Grid Engine

Submit task: qsub ...

All tasks
completed?

Request queue state: qstat ...

no

Pack result files to *.zip archive

(Traces, Logs, Specification,..)

yes

fault_[N-1].do

fault_[i]

...

fault_[i+1]

...

Pi-1

List of sub-processes

... P1 P0

State: [Pi … P0].poll()

Number
of active processes

< MaxProc

All scripts
processed?

no

no

Spawn sub-process Popen(...)

yes

Faultload Generator
injection
scripts

Sensitivity analysis

GRID flow Multicore flow

Download from remote host (SFTP)

1,50

111,3

1,55

2,91

41,6

2.82 single
2.63 multi
2.65 grid

64,9

1,48

2,62

19,83

1

2

4

8

16

32

64

128

Mixed-level
assembly

Initialization
checkpoint

Clustering
checkpoint

Multicore Grid

Estimated

Experimental

Workload

checkpoint

