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1. Motivation and objectives

Abstract ─ Increasing integration scales and clock frequencies also increase the sensitivity of integrated circuits to different kinds of faults. Early

design verification in presence of faults and dependability assessment is commonly accomplished by means of Simulation-based fault injection (SBFI)

techniques, which can be applied at different levels of HDL description. The closer to implementation models are, the more representative are simulation

results. However, injecting faults in highly complex and detailed models is a very resource-intensive process that usually requires prohibitive simulation

times. This work proposes an approach to speed up this process, making feasible the dependability assessment of very detailed implementation-level

HDL models.

3. Proposed optimizations and expected speed-up 4. Experimental speed-up versus estimation

Table 1. Experimentation time measured with respect to enabled optimizations

1. Mixed-Level HDL assembly - reduces computational complexity of HDL model

3. Multiprocessing - execute N

experiments in Proc processes in

parallel on Grid or Mutlicore-based

computing systems

4. Fine tuning of sampling

procedure – observation traces are

optimized for minimal size by

adjusting sampling triggering

conditions to particular workload.

Accuracy of sensitivity analysis is

maintained.

Figure 5. Expected and experimentally obtained speed-up factor (logarithmic scale)

• Global speed-up factor: 5047 (SMLA×SICP×SWCP×SMP)

• Storage space reduction factor: 1387 + tracing speed-up of 1,36.

• No major discrepancies in SBFI results between implementation- and mixed-

level models (less than 2% difference for all fault models and failure modes).

Figure 3. Checkpoints reduce the simulation time 

to just fault injection and effects observation

Target model – LEON3 soft-core processor synthesized for Virtex-6 FPGA.

Workload – integer matrix multiplication (MiBench automotive benchmark)

Faultload – single transient (bit-flip) and permanent (stuck-at-/0) faults.

Computing platforms:

a) Cluster ‘Rigel’ (UPV): 72 nodes Xeon E5-2450, CentOS 6, Sun Grid Engine;

b) Multicore PC: Intel Core i5-4670, CentOS 6.7.

Simulator: Mentor Graphics ModelSim 10.4 in both environments.

2. Factors affecting complexity of faults simulation

Figure 1. Simulation time growth

drastically with the increase of

model accuracy along the semi-

custom design flow

• Hardware designs must be verified in

presence of faults, caused by internal

and/or environmental factors, e.g.

single-event effects (SEE). Sensitivity

to faults should be estimated to ensure

device’s safe behavior.

• Faults effects can be representatively

simulated by means of implementation-

level HDL models, which accurately

reflect functional/timing behavior and

the structure of resulting circuit.

• Simulation of implementation-level

models is up to 4 orders of magnitude

slower than of source RTL (behavioral)

models, resulting in prohibitive SBFI

experimentation time in practice.
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Objectives:

• Analyze the factors affecting simulation complexity at implementation-level

• Optimize fault simulation procedures with the aim for speed-up to enable

sensitivity analysis/dependability assessment for complex HDL designs.
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 Optimizations   Execution time 

Config. ICP MLA WCP Multicore Grid 
 
 

Single 
experiment 

Tavg (seconds) 

Standard 
deviation 

σ 

Whole 
campaign 

Ttotal (hours) 

C1 − − − − −   7327 11.0 15896# 
C2 + − − − −   113 14.9 246.8* 
C3 + + − − −   40 2.2 87.7* 
C4 + + + − −   27 3.8 59.5* 
C5 + + + + −   30 5.8 22.7 
C6 + − + + −   79 15.7 59.1 

C7 + + + − +   43 10.9 3.0 

C8 + − + − +   114 28.0 5.7 

# Estimation based on 10 injection experiments 

* Estimation based on 500 injection experiments  

CPI/CPW – initialization / workload checkpoints, MLA – mixed-level assembly 

Conclusions: Proposed optimizations greatly accelerated the execution of fault simulation experiments and reduced the required storage space without

any loss in accuracy of results, supporting the stated hypotheses and expressions for speed-up factors. Latter could be used to estimate the efficiency of

each optimization depending on the properties of particular HDL model, workload and computing resources. This enabled extensive SBFI campaigns for

complex implementation-level models, required (among other applications) for the ongoing study of design space exploration for HW design.
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Figure 4. Grid- and multicore-based SBFI flow
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