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Abstract — Increasing integration scales and clock frequencies also increase the sensitivity of integrated circuits to different kinds of faults. Early

design verification in presence of faults and dependability assessment is commonly accomplished by means of Simulation-based fault injection (SBFI)
techniques, which can be applied at different levels of HDL description. The closer to implementation models are, the more representative are simulation
results. However, injecting faults in highly complex and detailed models Is a very resource-intensive process that usually requires prohibitive simulation
times. This work proposes an approach to speed up this process, making feasible the dependability assessment of very detailed implementation-level
HDL models.
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Objectives:
* Analyze the factors affecting simulation complexity at implementation-level

* Optimize fault simulation procedures with the aim for speed-up to enable
sensitivity analysis/dependability assessment for complex HDL designs.

3. Proposed optimizations and expected speed-up

4. Experimental speed-up versus estimation
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Figure 4. Grid- and multicore-based SBF! flow level models (less than 2% difference for all fault models and failure modes).
Conclusions: Proposed optimizations greatly accelerated the execution of fault simulation experiments and reduced the required storage space without
any loss In accuracy of results, supporting the stated hypotheses and expressions for speed-up factors. Latter could be used to estimate the efficiency of
each optimization depending on the properties of particular HDL model, workload and computing resources. This enabled extensive SBFI campaigns for
complex implementation-level models, required (among other applications) for the ongoing study of design space exploration for HW design.
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