Using Real Traffic Data for ITS Simulation: Procedure and Validation

Jorge L. Zambrano-Martinez¹, Carlos T. Calafate¹, David Soler², Juan-Carlos Cano¹, Pietro Manzoni¹

¹Department of Computer Engineering (DISCA) ²Institute of Multidisciplinary Mathematics (IMM) Universitat Politècnica de València, Spain Contact Author: jorzamma@doctor.upv.es

Introduction

- Traffic-related problems such as CO2 emissions, accidents, noise and environment pollution are critical issues for city authorities.
- ► Traffic management solutions require the use of simulators.
- ► To capture in detail all characteristics and dependencies associated to real-life traffic.
- ► We propose a procedure for traffic flow tuning in order to build realistic mobility models.

Validation of Iterative heuristic

DFROUTER Operation Analysis

► INPUT:

- Induction loop counts for the different roads of Valencia.
- ► We selected a typical Monday in November during the peak hour (8h00 - 9h00)..

- Estimation of the actual routes and vehicle count that match such input.
- After completing DFROUTERs process we observe:
- Significant mismatches between the generated traffic and the real traffic of Valencia used as reference.
- DFROUTER's output is 238.4% greater than reference data.

Proposed Heuristics - Iterative heuristic

Algorithm 1 Iterative heuristic.

Require: Road Network, flow, detectors files, n_{max} and ε

Figure 1: Flowchart of DRFOUTER

Curr Without heuristic Iterative heuristic 20000 15000 Induction loop detector count

Figure 2: Adjustment of vehicles in Valencia using the proposed heuristic

Simulation Results

Ensure: Vehicle-Street-Segment-info file 1: $\alpha \leftarrow$ calculate reference number of vehicles 2: $\varphi_{min}^{0} \leftarrow 0, \varphi_{0} \leftarrow \varphi_{max}^{0} \leftarrow 1, \tau_{s,0} \leftarrow \frac{\sigma_{s}}{\omega_{s}} \cdot \varphi_{0}$ 3: Process input files with DFROUTER 4: *n* ← 1 5: $\beta_1 \leftarrow$ Vehicle count per street ID 6: $\varphi_1 \leftarrow \frac{\alpha}{\beta_1}$ 7: $\tau_{s,1} \leftarrow \frac{\sigma_s}{\omega_s} \cdot \varphi_1$ 8: Create a file with information about vehicles, segments and streets 9: Apply $\tau_{s,1}$ to all street IDs $(\tau_{s,n})$ 10: $\varphi_{\min}^1 \leftarrow \varphi_{\min}^0, \varphi_{\max}^1 \leftarrow \varphi_1$ 11: while $\left|\frac{\beta_n}{\alpha} - 1\right| > \varepsilon$ and $n < n_{max}$ do Process input files with DFROUTER 12: $n \leftarrow n + 1$ 13: $\beta_n \leftarrow \text{Vehicle count per street ID}$ 14: if $\left|\frac{\beta_n}{\alpha} - 1\right| > \varepsilon$ then 15: if $\beta_n > \alpha$ then 16: $\varphi_{max}^{n} \leftarrow \varphi_{n-1}, \varphi_{min}^{n} \leftarrow \varphi_{min}^{n-1}$ 17: else if $\beta_n < \alpha$ then 18: $\varphi_{max}^{n} \leftarrow \varphi_{max}^{n-1}, \varphi_{min}^{n} \leftarrow \varphi_{n-1}$ 19: end if 20: $\varphi_n \leftarrow \frac{\varphi_{max}^n + \varphi_{min}^n}{2}$ 21:

Figure 3: Geographical distribution of traffic sources (a, b, c) and CDF for number of vehicle per traffic dispersion.

Conclusion and Future work

- ► DFROUTER + Iterative heuristic = Good approximation to real traffic distribution.
- Validation against real traffic data for Valencia
- We observe a good traffic dispersion throughout the different streets.
- Traffic is flowing through a high number of street segments.

22:
$$\tau_{s,n} \leftarrow \frac{\sigma_s}{\omega_s} \cdot \varphi_n$$
 to all street IDs $(\tau_{s,n})$
23: end if
24: end while

Adopted Strategy

▶ 1. Calculate the adjustment factor:

$$\varphi_1 = \frac{\alpha}{\beta_1}, \varphi_n = \frac{\varphi_{min}^n + \varphi_{max}^n}{2}$$

► 2. Normalize traffic:

$$\tau_{s,n} = \frac{\sigma_s}{\omega_s} \cdot \varphi_n$$

► 3. Calculate new input based previous DFROUTER's output until:

 $\left|\frac{\beta_n}{\alpha}-1\right| < \varepsilon \text{ or } n = n_{max}$

- There is a clear asymmetry between streets/avenues with low and high traffic levels, as occurs in real situations.
- ► The results achieved
 - Allow us to be satisfied with the generated O-D matrix.
 - Enable making an analysis of possible traffic optimizations during peak hours, improving travel times and reducing CO2 emissions.

Acknowledgments

This work was partially supported by Valencia's Traffic Management Department, by the Ministerio de Economía y Competitividad, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R, and by the Programa de Becas SENESCYTde la República del Ecuador.