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The reversible oxidation-reduction of silver in zeolites provides an excellent model system for 
studying the mechanism of formation of noble metal clusters within zeolite channels and cavities.[1] 
The zeolite cages provide a practical means of preventing the cluster cohesion, because small metal 
clusters have a strong tendency to form larger particles (d > 10 nm) driven by surface energy 
minimization.[2] It would be expected that the zeolite pore topology (LTA, FAU, CHA, RHO, etc.) could 
drive the clustering of Ag species during thermal treatment of Ag-zeolites in a different way. XAS 
analysis could shed light on silver oxidation state and local structural information of their aggregation 
from isolated silver cations into clusters under different controlled in situ thermal conditions. The low 
stability and lack of ordering of the clusters located in Ag-zeolites difficult the characterization by 
other techniques, highlighting the importance of XAS in this study. 

In this work, we carried out an in situ XAS study 
on the effect of temperature and the presence 

of different gases in the nature of the silver 
species occluded within CHA zeolite. 
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The nature of the silver species occluded within CHA zeolite has been stablished 
by a XAS study. It has been observed that after ion-exchange silver is present as 
Ag+ in the CHA zeolite. The thermal reduction of the sample under H2 results in the 
reduction of Ag+ to Ag0 and in the formation of silver nanoparticles with different 
size depending on the temperature, being the nanoparticles formed at 400 °C 
larger than those formed at 100 °C. Moreover, thermal treatments under air and 
He do not change the silver oxidation state of Ag species. However, the 
appearance of a second coordination shell evidences the formation of a complex 
local structure around silver in these systems.  
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Also non-catalytic applications: 
Antimicrobial agents 
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Sample 
SBET 

(m2/g) 
C 

Vµ 
(cm3/g) 

TPV 
(cm3/g) 

CHA 18 166 0.002 0.06 

Ag-CHA 142 5196 0.05 0.11 

Gel formation for 30 minutes 
Y zeolite  

(CBV 500) 
KOH H2O 

5.05 g 2.67 g 42.6 g 

1 

2 Autoclave – Static – 100 ° C – 4 days 

3 Filtered, washed with H2O and dried for 24 h at 100 °C 
Yield: 4.9 g 

1 g CHA + 0.9 g AgNO3 – 16 hours – RT  
(Covered with Al foil to avoid contact with light) 

Dried for 12 h at 100 °C 

Ag-CHA 
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Fig. 1. XRD (left) and N2 adsorption isotherms (right) of CHA and Ag-CHA.  

Fig. 2. UV-vis spectra of Ag-CHA and CHA (left) and FESEM of CHA (right). 

XRD - No appreciable 
peaks attributed to the 

presence of metallic 
silver or Ag2O in Ag-CHA.  

N2 adsorption - 
Increase in specific area 
(SBET), Vµ and TPV after 

ion-exchange. 

UV-vis – Absence of 
absorption bands due to the 

Ag0 atoms nor clusters in 
wavelength regions longer 

than 250 nm. 

FESEM – Morphology 
characteristic of  chabazite. 

The spectra were normalized and treated with the Athena software.[3] EXAFS data analysis was 
performed using the Arthemis software.[3] Phase and amplitudes have been calculated by FEFF6 
code [4] and successfully checked with Ag metal foil. 

ICP 
Si/Al: 1.98 

Ag/Al: 
0.65 

Fig. 3. XANES spectra (left) and |FT| of the k3-weighted EXAFS spectra, no phase corrected, 
(right) of Ag-CHA sample at room temperature and after treatments under oxidative and inert 
atmosphere, compared to bulk Ag2O and Ag.  

Fig. 4. XANES spectra (left) and |FT| of the k3-weighted EXAFS spectra, no phase corrected, 
(right) of Ag-CHA sample after reduction in H2 at different temperatures, compared to bulk Ag. 
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Sample CN  R (Å) σ2 (Å-2) E0 (eV) r-factor 

AgCHA-400 H2 12.0 ± 0.6 2.860 ± 0.004 0.0094 ± 0.0005 2.5 ± 0.4 0.003 

AgCHA-200 H2 8.9 ± 0.5 2.841 ± 0.005 0.0131 ± 0.0007 2.7 ± 0.5 0.004 

AgCHA-100 H2 5.7 ± 0.7 2.780 ±  0.014 0.0147 ± 0.0018 0.3 ± 1.1 0.021 

k-range: 2.3-11.8 
R-range: 2-3 Å 

Fitted in k1,k2,k3 

Ag powder 
S0

2: 0.73 

Reduction temperature/ Coordination number 

  <d>   
bulk <d> 1 nm[5,6] <d> 2 nm 

Table 1. Summary of the parameters optimized by fitting Ag-Ag distance of EXAFS data of sample 
after treatment in H2 at different temperatures. 


