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Differential equations are useful tools to modeling numerous phenomena in many dis-ciplines. From a practical standpoint, the application of differential equations requiressetting their inputs (for example coefficients and initial conditions). These parameters areusually obtained by experiments, then measurament errors are involved. In addition, thereare external sources which can affect the physical system to be modelled. These factsmotivate us to consider the inputs parameters as a random variables (RVs) or stochasticprocesses (SPs) rather than deterministic constans or functions, respectively.Notice that, the main problem dealing with a deterministic differential equation is to obtainthe solution, however, in this case, the solution is a SP, say X (t), and then it is also impor-tant to compute its main statistical functions, such as the mean, µX (t), and the variance,
σX (t). Nevertheless, a more convenient goal is the determination of its first probabilitydensity function (1-PDF), f1(x, t), because from it we have a full probabilistic descriptionof the solution SP in each time instant t. Furthermore, from the 1-PDF one can computeall the one-dimensional statistical moment of X (t) and hence the mean and the variancecan be easily obtained,
E
[(X (t))k] = ∫ ∞

−∞
xkf1(x, t) dx, k = 0, 1, 2, . . . ,

 µX (t) = E [(X (t))1]
σX (t) = E [(X (t))2]− (µX (t))2 (1)

In this work, we will solve an initial value problem (IVP) based on a first-order linearequation where the linear coefficient, a(t, ω), is a SP and the initial condition, X0(ω) is aRV. Then, our purpose is to obtain the first probability density function (1-PDF), f1(x, t), ofthe solution SP, X (t), of the following problem
X ′(t, ω) = a(t, ω)X (t, ω),
X (t0, ω) = X0(ω). }

t ∈ T ⊂ R+. (2)
In order to obtain the 1-PDF of the solution SP X (t) of the IVP (2) both the Karhunen-Loève Expansion (KLE) and the Random Variable Transformation (RVT) technique will beused. Combinig both techniques the 1-PDF of the truncated solution SP, fN1 (x, t), will beobtained. Then, we impose a mild conditions with which the convergence in distribution isassured. Both results are stated as follows

Let U = (U1, . . . , Un)> and V = (V1, . . . , Vn)> be two n-dimensional absolutely contin-uous random vectors. Let g : Rn → Rn be a one-to-one deterministic transformationof U into V, i.e., V = g(U). Assume that g is continuous in U and has continuouspartial derivatives with respect to U. Then, if fU(u) denotes the joint PDF of vector U,and h = g−1 = (h1(v1, . . . , vn), . . . , hn(v1, . . . , vn))> represents the inverse mapping of
g = (g1(u1, . . . , un), . . . , gn(u1, . . . , un))>, the joint PDF of vector V is given by

fV(v) = fU (h(v)) |J| ,
where |J| is the absolute value of the Jacobian.

Theorem: RVT technique. [1, pp. 24–25]

Consider a SP {a(t) ∈ L2(Ω, L2(T )), with mean µa(t). Then,
a(t, ω) = µa(t) + ∞∑

j=1
√νjφj(t)ξj(ω), (3)

being {νj , φj} denote, respectively, the eigenvalues and eigenfunctions of the covari-ance function, C (s, t). Random variables ξj(ω) have mean zero, unit variance and arepairwise uncorrelated.

L2 convergence of KLE [2, pp. 202]

Motivation

To apply the RVT technique, from a computational point of view, we consider the N-truncation of (3). Then, the 1-PDF, fN1 (x, t), of the truncated solution SP, XN(t),
fN1 (x, t) = ∫

D (ξ) fX0,ξ1,...,ξN

x e−
∫ t

t0 aN(s, ω)ds
, ξ1, . . . , ξN

 e
−
∫ t

t0 aN(s, ω)dsdξN · · · dξ1.
(4)And finally, we establish conditions for the uniform convergence.

• D (ξ) = D (ξ1, . . . , ξN) is bounded.
• ∀N, fX0,ξ1,...,ξN(x0, ξ1, . . . , ξN) is uniformly bounded.
• T is closed and bounded.
• The covariance function is continuous in T × T .
• g(x0) = fX0,ξ1,...,ξN(x0, ξ1, ..., ξN) is continuous in x0 ∀N fixed.. Then, lim

N→∞
fN1 (x, t) = f1(x, t), ∀(x, t) ∈ R× T fixed.

Theoretical Results

We consider that the SP a(t, ω) is the Brownian motion, t0 = 0 and T = 2. Then, it isknown that the covariance function is C (s, t) = min (s, t), (s, t) ∈ T × T , µa(t) = 0 and
σa(t) = 1, ∀t ∈ T = [0, T ]. Notice that, this is a test example, because of the 1-PDF,
f1(x, t), of the exact solution SP, X (t), can be computed

f1(x, t) = ∫ ∞
−∞

fX0,W (x e−w, w) e−w dw. (5)
In Figure 1 the graphical representation of the 1-PDF of the exact and truncations N = 1and N = 2 are showed taking the following distributions for the input parameters
• ξj ∼ N(0, 1), j = 1, 2, truncated in the interval [−10, 10]..
• X0 ∼ Un[0, 1].
• X0, ξ1 and ξ2 independent RVs.

We observe that the 1-PDF of the first truncation is closed to the 1-PDF of the exactsolution. For sake of clarity in Figure 2 the 1-PDFs for this truncation in different timesare computed and in Table 3 the error,
eN = ∫ ∞

−∞

∣∣∣f1(x, t)− fN1 (x, t)∣∣∣ dx, t ∈ {0.1, 1, 2}, N ∈ {1, 2}, (6)
is calculated for this times levels.

Fig. 1: Left: 1-PDF of the exact solution SP given by (5). Center, right:1-PDF of the first and second truncation, respectively given by (4).
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Fig. 2: 1-PDF of the exact solution SP and the truncation N = 1, 2,for differents values of t. Left: t = 0.1. Center: t = 1. Right: t = 2.
eN N = 1 N = 2t=0.1 0.019319 0.016788
t = 1 0.077919 0.008663
t = 2 0.005310 0.000832Fig. 3: Error measure eN defined by (6) for different time instants,

t ∈ {0.1, 1, 2}, and truncation orders, N ∈ {1, 2}.
Finally, in Figure 5 the mean and the standard deviation for different truncation are plotted.We can observe the convergence of both, although the standard deviation is less fast. Asbefore the error is calculated in Table 4 using the expression (6) but in this case taking asa functions the mean and the standard deviation.

eN N = 1 N = 2 N = 3 N = 4Mean 0.055567 0.005541 0.002425 0.000871Standard deviation 0.383975 0.169942 0.159339 0.151808Fig. 4: Error measure eN defined by (6) to the mean for truncations N = 1, 2and the standard deviation for truncations N = 1, 2, 3, 4.
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Fig. 5: Left: Mean of the solution and truncations N = 1 and N = 2.Right: Standard deviation of the solution and truncation N = 1, 2, 3, 4
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