

Oscar Trull Dominguez, Thesis director: J.Carlos García-Díaz

Programa de doctorado en estadística y optimización **Department of Statistics, Applied Operational Research and Quality**

Background The electricity cannot be stored in big quantities, thus the production and consumption must match. Forecas-

ting techniques are under development to provide more accurate forecasts.

to Spanish short-term elecricity market.

Program Phases

Startup model

New models development

Test Run at rate

Operation

Modelling

General Multiple Seasonalities Easter and Holidays influence Strikes and other special events **Climate conditions**

Main Results

Ongoing results

General Holidays modelling

Expected Dates

March 2018 Operation

Main bibliography

Moral-Carcedo, J. Vicéns-Otero, Modelling the non-linear response of Spanish electricity demand to temperature variations, Energy Econ. 27 (2005) 477–494 **S. Arora, J.W. Taylor**, Short-term forecasting of anomalous load using rule-based triple seasonal methods, Power Syst. IEEE Trans. 28 (2013) 3235–3242. J.D. Bermúdez, Exponential smoothing with covariates applied to electricity demand forecast, Eur. J. Ind. Eng. 7 (2013) 333–349. **R. Weron**, Electricity price forecasting: A review of the state-of-the-art with a look into the future, Int. J. Forecast. 30 (2014) 1030–1081. J.W. Taylor, Short-term electricity demand forecasting using double seasonal exponential smoothing, J. Oper. Res. Soc. 54 (2003) 799–805.