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We propose a general methodology to study the stroke disease using a Markov model,where some parameters on the transition matrix will be considered random variables (r.v.’s).We will consider three states, Susceptible (S), Reliant (R) and Deceased (D). In Figure 1,we represent the influence diagram associated to the Markov model where transitionsamong states are included.

Fig. 1: Influence diagram for the Markov model.The Markov model is formulated as follows Sn+1
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(S0, R0, D0)> = (s0, r0, 0)>, n = 0, 1, 2, . . . ,


(1)

where
• The relative risk, RR , the death rate due to any cause, T2, and the probability of tran-sition R → D, P , are r.v.’s.
• Sn, Rn and Dn are the proportion of susceptibles, reliants and deceaseds in cycle n,respectively.
• (s0, r0, 0)> is the initial cohort.
• t1 and t3 are the non–moral stroke and the stroke death rates, respectively.We will assume that Sn + Rn +Dn = 1 for each n.

Introduction

To obtain a full probabilistic description of the solution stochastic process to (1), we willapply RVT technique.
Let U = (U1, . . . , Un)> and V = (V1, . . . , Vn)> be two n-dimensional absolutely contin-uous random vectors. Let g : Rn → Rn be a one-to-one deterministic transformationof U into V, i.e., V = g(U). Assume that g is continuous in U and has continuous par-tial derivatives with respect to U. Then, if fU(u) denotes the joint probability densityfunction of vector U, and h = g−1 = (h1(v1, . . . , vn), . . . , hn(v1, . . . , vn))> representsthe inverse mapping of g = (g1(u1, . . . , un), . . . , gn(u1, . . . , un))>, the joint probabilitydensity function of vector V is given by

fV(v) = fU (h(v)) |J| ,
where |J| is the absolute value of the Jacobian.

Theorem: RVT technique. [1, pp. 24–25]

Applying this method, we obtain:
• The first probability density function (1-p.d.f.) of susceptible, reliant and deceased sub-populations. For example, for susceptible subpopulation the 1-p.d.f. is given by
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• Time until a given proportion of the population remains susceptible, reliant or deceased.
With these 1-p.d.f.’s we can compute, for example, for susceptible subpopulation:
• The mean and the variance for each cycle n.
• Confidence intervals.
• The proportion of susceptibles that lies between a and b at a specific time period, say
n̂,

P[a ≤ Sn̂ ≤ b] = ∫ b

a
f1(s, n̂)ds.

Theoretical Results

Based on [2], we assume that
• The initial condition is (s0, r0, 0)> = (1, 0, 0)>.
•RR , is a lognormal r.v. with parameters (1.793, 0.143), i.e., ln(RR) ∼ N(1.793, 0.143).
•P is a beta r.v. with parameters (80, 120), i.e., P ∼ Be(80; 120).
• T2 is a uniform r.v. on the interval ]21.27, 22.27[, T2 ∼ U(]21.27, 22.27[).
• t1 = 1.11 and t3 = 1.76.
•RR , P and T2 are pairwise independent r.v.’s.

In Figure 2, the 1-p.d.f.’s of susceptibles, reliants and deceaseds have been plotted. Wecan observe that when time increases the percentage of susceptibles decreases. Besides,the percentage of reliants increases at the beginning, specifically from n = 1 to n = 6, andafterwards this percentage decreases towards zero. With regard to deceased population,as is an absorbent state, all the population tends to this state. This is in agreement withresults shown in Figure 2, where we can see that the percentage of deceaseds increasesover the time. Besides, the variability in both susceptible and deceased subpopulationsincreases when times goes on. It is also interesting to observe that the 1-p.d.f. becomessharper as standard deviation decreases.
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Fig. 2: Plot of the 1-p.d.f.’s of susceptibles (left), reliants (center) and deceaseds (right) at the followingvalues of n ∈ {1, 2, . . . , 25}.
Moreover, in Figure 3 it is shown the mean plus/minus the standard deviation functions ofthe three subpopulations. Notice that graphical representations shown in Figure 2 andFigure 3 are in agreement.
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Fig. 3: Expectation plus/minus standard deviation functions for susceptibles (left), reliants (center) anddeceaseds (right).
In addition, we can obtain the proportion of reliant subpopulation which lies between
a = 0.010 and b = 0.015 in the time period n̂ = 5:

P[0.010 ≤ R5 ≤ 0.015] = ∫ 0.015
0.010 f1(r, 5)dr = 0.700602.

In Figure 4 it is show the p.d.f. of the time, NS , until a given proportion, ρS , of the popu-lation remains susceptible for different values of ρS ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
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Fig. 4: Plot of the p.d.f. of the time NS until a proportion ρS ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} of thepopulation remains susceptible.
According to the p.d.f. of NS , we can compute its expectation,

E [NS ] = ∫ ∞0 nf1(n, 0.70)dn = 9.51904.
This means that the middle of the cycle 9 represents, approximately, the average time until70% of the population will be susceptible. This can be also seen in Figure 4.
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