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MOTIVATION AND QUESTION CONSIDERED
PROBLEM
We study the iterative solution of linear systems

Ax = b, (1)
where A ∈ Rn×n is nonsingular, large and sparse. Let
A = H + K, where H and K are its symmetric and skew-
symmetric parts, respectively. Assume K can be approx-
imated by a low-rank matrix and that K = FCF T + E
where F ∈ Rn×s and C ∈ Rs×s (skew-symmetric matrix)
have full rank with s� n, ‖ E ‖� 1.

ACTUAL STATE
Different strategies have been proposed to solve (1), when
E = 0:
•Progressive GMRES (PGMRES) [1]: uses short recurrence
formulas and suffers from instabilities due to the loss of
orthogonality.

• Schur complement method (SCM) [3]: applies the MIN-
RES method s+1 times. It can be used as a preconditioner
for GMRES, but can be costly.

WHAT WE PROPOSE
Compute a preconditioner for the matrix Ā = H + FCF T

that approximates A, following the strategy presented in [2].
The preconditioner is obtained from an approximate block
LDU factorization of the augmented matrix

H F
F T −C−1

 . (2)

It is used as preconditioner for the (restarted) GMRES [6]
and BICGSTAB [7] methods.

OUR UPDATED PRECONDITIONER METHOD (UP) AND SOME NUMERICAL RESULTS

Preconditioner Computation

The block LDU factorization of the matrix in (2)
is: 
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where R = −(C−1 + F TU−1
H L−1

H F ).

1 Compute H ≈ LHUH.
2 Compute T1 = F TU−1

H and T2 = L−1
H F .

3 Compute R = −(C−1 + T1T2).
4 Compute R ≈ LRUR.

Preconditioner Application

Obtain the preconditioned vector s from:
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1 Solve LHr1 = r.
2 Solve (LRUR)r2 = −T1r1.
3 Solve UHs = r1 − T2r2.
The computation and application of the precon-
ditioner is inexpensive provided that s � n. The
preconditioner can be viewed as a low-rank update
(see [2]) of the incomplete factorization computed
for H . It will be referenced as updated precondi-
tioned method (UP).

Numerical Results

EXAMPLE 1. See [3]. Consider

A =



Λ−
Λ+

Z



where Λ− = diag(λ1, . . . , λp), Λ+ =
diag(λp+1, . . . , λn−s) and Z = tridiag(−γ, 1, γ) ∈
Rs×s, p � n, 2 ≤ s � n and γ > 0. The
eigenvalues are:
•λ1, . . . , λp uniformly spaced in the negative real
interval [−β,−α], 0 < α < β;

•λp+1, . . . , λn−s uniformly spaced in the positive
real interval [α, β];

• and the other s eigenvalues from the
skew-symmetric matrix Z.

Figure: Time comparison to solve the system Ax = b with
b = 1/

√
n, n = 105, α = 1/8, β = 1, γ = 1. Precondi-

tioner density is equal to 2 in all cases.

EXAMPLE 2. See [1]. Bratu 2D problem con-
sists on solving the non linear boundary problem
−∆u−λ exp(u) = 0 in Ω, with u = 0 on ∂Ω (3)

depending on the parameter λ, ∆ is the Laplacian,
Ω the unit square and ∂Ω its boundary. Discretized
with five-point stencil finite difference, in a grid of
500× 500 points. The coefficient matrix has order
n = 2.5× 105 with skew symmetric part of rank 2.

Method Time (s) Iter
GMRES[100] IC 45,1028 123
GMRES[100] UP 46,2829 131

BICGSTAB 26.6754 827
BICGSTAB IC 13,1653 194
BICGSTAB UP 11,2569 156

SCM 38,2014 255
Table: Incomplete Cholesky factorization of H with drop-
ping of 10−2. Preconditioner density is equal to 0.7131.

EXAMPLE 3. Define:

A =



Ψ
Γ

Ω


, FCF T =



0
0

Ω


, E =



0
Γ

0


where Ψ is of size n/2 from the discretization of

the 2D Poisson operator, Γ = tridiag(−γ,−4, γ)
and Ω = tridiag(ω,−4, ω) are tridiagonal matrices
of dimension n/2− s and s� n, respectively. We
consider n = 250000, γ = 0.01, ω = 10 and s tak-
ing different even values (particularly from 10 to
40) representing the rank of FCF T that approxi-
mates K. In this case ||E|| = 0.02.
Eigenvalue distribution of A:

Figure: Eigenvalues for A with n=2500 and s=20.

Results: We use an incomplete LU of the sym-
metric part H with drop tolerance 10−2, 1000 as
maximum number of iterations to reach conver-
gence with residual 10−8. The right hand side b is
a random vector.

Iterations
s 10 20 30 40

GMRES[90] ILU H 228 233 274 398
GMRES[90] UP 99 99 99 99

GMRES[90] SCM P. 206 206 206 206
BISGSTAB ILU H 259.5 663.5 993 †

BICGSTAB UP 114 125 113 125

Time (sec.)
s 10 20 30 40

GMRES[90] ILU H 75.3 79.8 101.7 140.0
GMRES[90] UP 36.0 35.8 36.3 36.2

GMRES[90] SCM P. 73.6 74.2 76.3 77.6
BISGSTAB ILU H 14.6 37.3 56.4 †

BICGSTAB UP 6.7 7.3 6.7 7.4

The results were obtained with MATLAB.

Future Job

1 We already have some spectral
properties of our preconditioner.

2 Find out applications satisfying our
assumptions and test our method.

3 Implement Balanced Incomplete
Factorization, see [4, 5].
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