Preconditioners for Nonsymmetric Linear Systems with Low-Rank Skew-Symmetric Part

José Marín, José Mas, Juana Cerdán and Danny Guerrero

Departament de Matemàtica Aplicada, Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, Spain Supported by Spanish Grants MTM2014-58159-P and MTM2015-68805-REDT

MOTIVATION AND QUESTION CONSIDERED

PROBLEM

We study the iterative solution of linear systems

Ax = b,

(1)

where $A \in \mathbb{R}^{n \times n}$ is nonsingular, large and sparse. Let A = H + K, where H and K are its symmetric and skewsymmetric parts, respectively. Assume K can be approximated by a low-rank matrix and that $K = FCF^T + E$ where $F \in \mathbb{R}^{n \times s}$ and $C \in \mathbb{R}^{s \times s}$ (skew-symmetric matrix) have full rank with $s \ll n$, $|| E || \ll 1$.

ACTUAL STATE

Different strategies have been proposed to solve (1), when E=0:

- Progressive GMRES (PGMRES) [1]: uses short recurrence formulas and suffers from instabilities due to the loss of orthogonality.
- Schur complement method (SCM) [3]: applies the MIN-RES method s+1 times. It can be used as a preconditioner for GMRES, but can be costly.

WHAT WE PROPOSE

Compute a preconditioner for the matrix $A = H + F C F^T$ that approximates A, following the strategy presented in [2]. The preconditioner is obtained from an approximate block LDU factorization of the augmented matrix

$$\begin{pmatrix} H & F \\ F^T & -C^{-1} \end{pmatrix}.$$
 (2)

It is used as preconditioner for the (restarted) GMRES [6] and BICGSTAB [7] methods.

OUR UPDATED PRECONDITIONER METHOD (UP) AND SOME NUMERICAL RESULTS

Preconditioner Computation

The block LDU factorization of the matrix in (2) is: $\begin{pmatrix} H & F \\ F^T & -C^{-1} \end{pmatrix} = \begin{pmatrix} L_H & 0 \\ F^T U_H^{-1} & I \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & R \end{pmatrix} \begin{pmatrix} U_H & L_H^{-1} F \\ 0 & I \end{pmatrix}$ where $R = -(C^{-1} + F^T U_H^{-1} L_H^{-1} F).$

 Compute $H \approx L_H U_H$. Compute $T_1 = F^T U_H^{-1}$ and $T_2 = L_H^{-1} F$. Compute $R = -(C^{-1} + T_1T_2)$. • Compute $R \approx L_R U_R$.

Preconditioner Application

Obtain the preconditioned vector s from: $\begin{pmatrix} L_H & 0 \\ F^T U_H^{-1} & I \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & R \end{pmatrix} \begin{pmatrix} U_H & L_H^{-1} F \\ 0 & I \end{pmatrix} \begin{pmatrix} s \\ s_1 \end{pmatrix} = \begin{pmatrix} r \\ 0 \end{pmatrix}$

- $\lambda_{p+1}, \ldots, \lambda_{n-s}$ uniformly spaced in the positive real interval $[\alpha, \beta];$
- and the other *s* eigenvalues from the skew-symmetric matrix Z.

Figure: Time comparison to solve the system Ax = b with $b = 1/\sqrt{n}, n = 10^5, \alpha = 1/8, \beta = 1, \gamma = 1$. Preconditioner density is equal to 2 in all cases.

the 2D Poisson operator, $\Gamma = \text{tridiag}(-\gamma, -4, \gamma)$ and $\Omega = \operatorname{tridiag}(\omega, -4, \omega)$ are tridiagonal matrices of dimension n/2 - s and $s \ll n$, respectively. We consider n = 250000, $\gamma = 0.01$, $\omega = 10$ and s taking different even values (particularly from 10 to 40) representing the rank of FCF^T that approximates K. In this case ||E|| = 0.02. **Eigenvalue distribution of** *A*:

Figure: Eigenvalues for A with n=2500 and s=20.

 $I Solve L_H r_1 = r.$ • Solve $(L_R U_R) r_2 = -T_1 r_1$. **3** Solve $U_H s = r_1 - T_2 r_2$.

The computation and application of the preconditioner is inexpensive provided that $s \ll n$. The preconditioner can be viewed as a low-rank update (see [2]) of the incomplete factorization computed for H. It will be referenced as updated preconditioned method (UP).

Numerical Results

EXAMPLE 1. See [3]. Consider $A = \begin{vmatrix} \Lambda_{-} \\ \Lambda_{+} \\ Z \end{vmatrix}$ $= \operatorname{diag}(\lambda_1, \ldots, \lambda_p), \quad \Lambda_+ =$ where Λ_{-} diag $(\lambda_{p+1}, \ldots, \lambda_{n-s})$ and $Z = tridiag(-\gamma, 1, \gamma) \in$ $\mathbb{R}^{s \times s}$, $p \ll n$, $2 \leq s \ll n$ and $\gamma > 0$. The

EXAMPLE 2. See [1]. Bratu 2D problem consists on solving the non linear boundary problem $-\Delta u - \lambda \exp(u) = 0$ in Ω , with u = 0 on $\partial \Omega$ (3) depending on the parameter λ , Δ is the Laplacian, Ω the unit square and $\partial \Omega$ its boundary. Discretized with five-point stencil finite difference, in a grid of 500×500 points. The coefficient matrix has order $n = 2.5 \times 10^5$ with skew symmetric part of rank 2.

Method	Time (s)	Iter
GMRES[100] IC	45,1028	123
GMRES[100] UP	46,2829	131
BICGSTAB	26.6754	827
BICGSTAB IC	$13,\!1653$	194
BICGSTAB UP	$11,\!2569$	156
\mathbf{SCM}	38,2014	255

Table: Incomplete Cholesky factorization of H with dropping of 10^{-2} . Preconditioner density is equal to 0.7131.

EXAMPLE 3. Define:

 $|\Psi|$ 0 |0|

Results: We use an incomplete LU of the symmetric part H with drop tolerance 10^{-2} , 1000 as maximum number of iterations to reach convergence with residual 10^{-8} . The right hand side b is a random vector.

Iterations					
S	10	2	0 30) 40	
GMRES[90] ILU H	228	8 23	83 27	4 398	
GMRES[90] UP	99	9	9 99) 99	
GMRES[90] SCM P.	206	5 20)6 20	6 206	
BISGSTAB ILU H	259.	5 663	3.5 99	3 †	
BICGSTAB UP	114	l 12	25 11	3 125	
Time (sec.)					
S	10	20	30	40	
GMRES[90] ILU H	75.3	79.8	101.7	140.0	
GMRES[90] UP	36.0	35.8	36.3	36.2	
GMRES[90] SCM P.	73.6	74.2	76.3	77.6	
BISCSTAR ILLI H	1/16	27 2	56 /	+	

eigenvalues are: • $\lambda_1, \ldots, \lambda_p$ uniformly spaced in the negative real interval $[-\beta, -\alpha], 0 < \alpha < \beta;$

$A = \left| \begin{array}{c} \Gamma \end{array} \right|, \quad FCF^T = \left| \begin{array}{c} 0 \end{array} \right|, \quad E = \left| \begin{array}{c} \Gamma \end{array} \right|$ where Ψ is of size n/2 from the discretization of

BISGSIAB ILU H 14.0 37.3 30.4 **BICGSTAB UP** 6.7 7.3 6.7 7.4

The results were obtained with MATLAB.

REFERENCES

Future Job

• We already have some spectral properties of our preconditioner.

2 Find out applications satisfying our assumptions and test our method.

3 Implement Balanced Incomplete Factorization, see [4, 5].

[1] B. Beckermann and L. Reichel. The Arnoldi process and GMRES for nearly symmetric matrices. SIAM J. Matrix Anal. Appl., 30(1):102–120, 1998. [2] J. Marín, J. Cerdán and J. Mas. Low-rank updates of balanced incomplete factorization preconditioners. To appear in Numerical Algorithms. [3] K. Soodhalter, D. Szyld, M. Embree, J. Sifuentes and F. Xue. Short-term recurrence Krylov subspace methods for nearly hermitian matrices. SIAM J. Matrix Anal. Appl., 33(2):480–500, 2012.

[4] J. Mas, R. Bru, J. Marín and M. Tůma. Balanced incomplete factorization. SIAM J. Sci. Comput., 30(5):2302–2318, 2008.

[5] J. Mas, R. Bru, J. Marín and M. Tůma. Improved balanced incomplete factorization. SIAM J. Matrix Anal. Appl., 31(5):2431–2452, 2010.

[6] Y. Saad and M. Schulz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869, 1986.

[7] H.A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 12.