
Robust Error Correction for De Novo Assembly
via Spectral Partitioning and Sequence

Alignment

Andrei Alic1, Andrés Tomás1, José Salavert1, Ignacio Medina2, and Ignacio
Blanquer1

1 Universitat Politècnica de València
asalic@posgrado.upv.es, antodo@i3m.upv.es, josator@i3m.upv.es,

iblanque@dsic.upv.es
2 Centro de Investigación Pŕıncipe Felipe

imedina@cipf.es

Abstract. Error correction is the first step for any de novo assembly
using next generation sequencing (NGS) data. This task is quite dif-
ficult and most available error correction software only supports base
mismatches. In this work we propose a novel approach based on spec-
tral graph clustering and Smith-Waterman alignment. This approach
not only supports insertions and deletions, but also do not make any
assumptions about the sequenced data.

Keywords: error correction, de novo assembly, graph partition, spectral
clustering

1 Introduction

De novo assembly using next generation sequencing (NGS) data crucially de-
pends on being able to correct beforehand any errors present. NGS greatly re-
duced the time and cost to sequence genomes, but these advantages came with
the downfall of processing huge amounts of data.

Currently, there are four big players in the sequencing market, namely Illu-
mina, Life Technologies, PacBio and Applied Biosystems.

In principle, there are three possible error types for de novo assembly: sub-
stitutions, deletions and insertions. However the majority of existing error cor-
rection programs handle only the first type. This is because substitutions are
far easier to correct than deletions and insertions. Furthermore, the majority of
errors in data from the most popular technology (Illumina [?]) are substitutions.

Error correction programs can be categorized [?,?] in three main groups:
k-spectrum based, suffix tree/array based and sequence alignment based. Most
of these programs use a k-mer decomposition of the reads produced by the
sequencer. A k-mer is a specific tuple of k nucleic acid bases, where k is a
parameter determined by the underlying technology and the genome of the specie
being sequenced.

The first category of error correction programs analyze the distribution of
k-mers among reads and use a distance (usually Hamming) to determine those
reads which are closely related and, thus, aren’t supposed to be different. A
threshold T , firstly proposed in [?,?], is used to categorize the k-mers in solid
and insolid, by calculating their rate of appearance and then comparing this with
T . Those above the threshold are deemed solid, while the others (insolid) are
targeted to be converted to solid and replaced in the original locations. Some
of the most well known programs in this category are Quake [?], Reptile [?],
Racer [?] and Hammer [?]. All these programs can correct substitutions only.

The second group of error correction programs, the suffix tree/array based,
handles multiple k values and their respective T threshold. The three most used
algorithms in this category are SHREC [?], HSHREC [?] (the only one handling
insertions/deletions) and HiTEC [?].

The third the group of programs employ multiple sequence alignment to
search for errors, with Coral [?] and Echo [?] being two examples. The former
groups those reads sharing a k-mer and afterward uses a modified version of
Needleman-Wunsch to determine the consensus for a group and to modify all
reads to fit together, dealing with all three error types. The latter has a similar
approach but it only handles substitutions.

In this article we present a method from the multiple sequence alignment
family. Like other methods in this family a two step approach is employed: first
similar reads are grouped together and corrections are computed independently
for each group. The novelty in our approach is the tool employed for each step:
spectral clustering and Smith-Waterman alignment. Both tools have sound the-
oretical and practical foundations, unlike the ad hoc methods employed by most
error correction programs.

The proposed method can handle all types of sequencing errors (substitu-
tions, deletions and insertions) and it is extensible to arbitrary read lengths.
Therefore, it is compatible with almost any type of technology. Moreover, our
implementation uses a reasonable amount of CPU and memory, running in a
regular desktop PC for typical experiment sizes.

2 Spectral Clustering

The first step of most error correction approaches is to compute groups of similar
reads. For de novo assembly, which obviously does not have a reference genome,
this is a difficult and expensive to compute task. Actually, solving perfectly the
grouping problem is as hard as computing the assembly.

Most approaches for error correction use k-mers to simplify the problem
while obtaining an acceptable solution. The distribution of k-mers in a genome
has several properties which are exploited to identify the segments with errors
and group similar reads. Usually k-mers with low frequency are considered to
contain errors while k-mers with frequency close to the coverage are considered
correct.

Our approach uses the number of common k-mers among reads as a measure
of their similarity. This metric can be seen as an edit distance, while being much
cheaper to compute than more accurate ones. Using this metric a weighted graph
is built, where the nodes are each one of the n reads and the edges indicate
the number of common k-mers between two reads. In contrast with other error
correction programs, our approach does not make any assumptions about the
k-mer distribution.

For typical experiments the k-mer graph is almost complete and its adjacency
matrix does not fit in computer main memories, making inviable most clustering
algorithms. However, spectral clustering combined with an iterative eigensolver
does not require to explicitly build the adjacency matrix. A similar combination
has been proposed for entity resolution in large databases [?].

Spectral clustering is a well known technique employed for big data analy-
sis, machine learning and image segmentation. Using eigenvectors for clustering
dates back to the original work of Fiedler [?]. Since then, this technique has
been discovered and re-discovered many times in different research communi-
ties. However, we are not aware of any previous application for error correction
in the genomics field. For an overview of spectral clustering, we recommend a
nice survey by von Luxburg [?]. There are several clustering variants with differ-
ent optimization targets. In our experience, the best heuristic for this application
is the normalized cut proposed previously for image segmentation [?].

Spectral clustering is based on computing the second smallest eigenvector
(Fiedler vector) of the Laplacian matrix

L = D −A

where A is the adjacency matrix of the graph, with each element aij equal to
the weight between nodes i and j. D is a diagonal matrix with dii equal to
the number of edges connecting to node i. Each dii can be easily computed
by a product A × 1, where 1 is a vector which all elements set to one. In our
application, the adjacency matrix is computed implicitly using a matrix B such
that

A = BBT − C

where bij is set if the read i contains the k-mer j. C is a diagonal matrix with
cii equal to the number of non-zero elements in the i-th row of B. The main
advantage of this approach is that B has a large number of zero elements (sparse
matrix) and can be stored efficiently in main memory.

The original formulation for the normalized cut heuristic proposes a gener-
alized eigenvalue problem

Lx = λDx.

This formulation also requires to compute the second smallest eigenvalue. As all
iterative solvers converge faster to the largest eigenvalues, we use instead the
random walk equivalent problem

D−1Ay = θy,

where x = y and θ = (1 − λ) [?]. In this way, the iterative solver computes the
largest eigenvalues θ and requires less iterations to converge.

The sign of each element from the eigenvector is used to partition the graph
in two clusters. This process is repeated for both clusters recursively until all
the reads share at least c common k-mers. However, this simple approach does
not work with the intricate graph from this application. Instead, we employ a
k-means algorithm to partition the vector in two clusters as proposed in [?].
The number and values of the initial points for k-means are straightforward in
this case, taking the maximum and minimum element from the eigenvector. An
overview of the algorithm follows:

function partition group(G)
if common kmers(G) ≤ c

correct group(G)
else
B ← {Bi : i ∈ G}
D ← diag

(
(BGB

T
G − I)1

)
solve(D−1(BGB

T
G + C)y = θy)

{G+, G−} ← kmeans split(y)
partition group(G+)
partition group(G−)

end

To compute the eigenvector y we use the Krylov-Schur [?] iterative method
implemented in SLEPc [?], a parallel library developed by the authors for solv-
ing large and sparse eigenproblems. The correction algorithm applied to each
computed cluster is discussed in the following section.

3 Error Correction

The next step following the partitioning comprises two phases: a more sensitive
re-clustering of the reads in a group generated by the partitioning mechanism
and the actual error correction.

The first phase uses a modified version of the Smith-Waterman algorithm
to achieve a more sensitive split of a group in subgroups. The variant employed
in our algorithm accepts gaps at the beginning and the end of the compared
items. A local alignment method is preferred over a global one because the whole
purpose of the method is to identify the longest common chunk (the overlap) and
not to see the overall differences between the full reads. Furthermore, for each
subgroup, a special data structure called consensus of the reads is also generated.
A consensus is a special data structure which holds the entire information for
a subgroup like the distribution of bases per column, the id of the reads on
a column, the original base at a certain position and the most representative
element for a column. The initial consensus is built when the corresponding
subgroup is created, using the first read as a seed for the columns. When a
read is compared with a subgroup, the Smith-Waterman algorithm aligns the

information from each column of the consensus with the data in the read. If the
alignment has a number of errors under a threshold T , the comparison is valid
and the result of the alignment is added to the consensus. An example of the
consensus can be seen in the lower half of Table 1. At the end of this step, all
reads from the initial group are divided in subgroups and their bases are kept in
the consensus.

The second phase, the actual error correction, traverses the list of subgroups
and, when they fit a certain size, tries to correct them by using the distribution
of bases for each column. While the algorithm loops over the columns in the
consensus, the reads are recreated with the nucleotide deemed as right for each
position. When a correction cannot be made for a certain column, the original
bases from their original positions are used instead. Given the fact that the con-
sensus is the result of an alignment (basically a contig formed by the overlapping
reads), there are a number of cases which can be encountered and must be han-
dled for each column. Using the data from Table 1 as an example, the following
cases can be deduced:

Column 4: Not enough bases to do the correction, keep original.
Column 5: 2× C, 1× T ⇒ The majority C is considered to be correct.
Column 6: 1×G, 1× C, 1× T ⇒ No clear winner, keep the original bases.
Column 12: 4× T, 1×N ⇒ The unknown base must be a T
Column 18: 4×−, 1× T ⇒ Insertion present only in read 4, delete the corre-

sponding position from the consensus.
Column 22: 4×N, 1×A⇒ The correct base is considered to be A.
Column 29: 2×C, 2×− ⇒ Equal coverage, but ’C’ is chosen because has more

weight than a missing value.

Table 1. Correction example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1 C G G T A A G T A T G A A - C A T A C A T C G A - T G T

2 A A G T A T G A A - C A T N C A T C G A

3 G G C A C T G T A A G N A T C A A - C A T N C A T C G A - T G T

4 A G T A T G A A T C A T N C A T C G A C T G T G G A A

5 G T C G T A A G T A T G A A - C A T N C A T C G A C T G T G G

- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 1 0 0 0 0 4 5 0 0 5 0 0 5 5 0 0 5 0 5 0 5 0 0 0 5 0 0 0 0 0 0 1 1

C 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 5 0 0 5 0 0 2 0 0 0 0 0 0 0

G 1 1 0 1 1 1 3 0 0 0 5 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 4 0 2 2 0 0

T 0 0 0 0 1 1 0 3 0 0 0 4 0 5 0 0 0 1 0 0 5 0 0 0 5 0 0 0 0 4 0 4 0 0 0 0

Finally, all reads, whether they are corrected or not, are output to a file
in fasta format. The original information from the input file for each record is
kept, but an additional field marking reads as being corrected or not is added. In
this way, the results of the correction process can be used as an input for other
programs, such as a genome assembler.

4 Results and Discussion

We present the results of our algorithm running on two real datatsets. As a
reference organism, we chose E Coli K12 MG1655 with a genome length of
4639 kb. This reference has a high quality assembly and it is used in previous
error correction literature as a benchmark [?,?,?,?,?]. Since our algorithm was
designed from the ground up with indels in mind and the Illumina sequencers
mostly generate substitutions errors, we only tested with data from Roche 454.
Table ?? contains the description for the datasets used.

Table 2. Experimental Datasets

Dataset Oragnism Genome Size (Mb) Nume Reads* Num Reads** Technology

SRR000868 E Coli 4.7 230517 223055 454

SRR363496 T Pallidum 1.1 264996 241560 454

SRR520273 T Pallidum 1.1 367056 354052 454

The main issue when using real data is the uncertainty of the exact location of
a read. A read can be mapped multiple times onto a reference genome. Secondly,
the so called mapping errors can actually be variances (SNPs). Furthermore, even
the matching bases can be errors because the available assembled genomes are
not perfect. As a result, the whole process of finding the real location of a read
is inexact. To alleviate this problem, we filtered the input data to eliminate all
non-mapping and multi-mapping reads. To test our algorithm with the filtered
dataset, we followed the process described in [?] for gapped benchmarking. The
formula used by previous works [?,?] is

G =
TP − FP
TP + FN

.

The results obtained with the test data are shown in Table ??.
Lastly, an important aspect of the error correction step is the resource con-

sumption of the application. As the quantity of data increases and the sequenced
organisms have larger genomes, the need of versatile solutions is in high demand.
In our case, the algorithm is bound to require more time than other solutions
due to the nature of errors supported. For instance, while for Illumina a simple
Hamming distance would do when comparing two reads, when it comes to indels,
a more computationally expensive alternative is needed (like Smith-Waterman
in our case). The solution we present herein is made up of two parts: the group
generation and the actual error correction process. The former requires a mem-
ory size sufficiently big to store all the k-mers, approximately one 32 bit integer
per each base in the input sequences. The error correction process requires a
lot less memory than the group generation, because it stores the consensus data
structure for only one group of reads at a time. Furthermore, the time spent by
this step is mainly influenced by the quality of the groups. The less subgroups
SW creates, the faster the algorithm is.

Table 3. Results

Dataset Algorithm Time Parallel h : m : s 12 Threads HT* Time Sequential h : m : s** Memory GB Gain

SRR000868

Coral 0:02:05 0:11:01 2.7 0.45

HPGEc 0:26:04/0:00:10 0:26:04/0:01:21 0.23/0.9 0.27

HSREC 0:05:03 0:34:43 4.4 -0.07

SRR363496

Coral 0:08:03 0:52:40 2.9 0.56

HPGEc 0:33:02/0:00:13 0:33:02/0:01:32 0.27/0.9 0.17

HSREC 0:04:43 0:32:57 4.6 0.006

SRR520273

Coral 0:15:04 1:29:31 3.2 0.57

HPGEc 0:44:17/0:00:14 0:44:17/0:01:47 0.4/0.9 0.13

HSREC 0:07:25 0:52:01 4.6 -0.04

5 Summary and Future Work

The approach presented in this paper allows us to correct data for de novo
assembly, without any assumptions about the target genome. Insertions and
deletions can be corrected in addition to mismatches, supporting a great variety
of sequencing platforms. Our algorithm is very robust against false corrections.
If a read maps to the genome reference, there is a very high probability that its
corrected version will map with less mismatches. Using an desktop PC (Intel i7
3930K CPU @ 3.2 GHz) our current development version can about one million
bases in less than an hour.

Things considered for future work are: Improve the execution speed by Fine
Tuning, Improve Support for Illumina (to be able to compete with Illumina-only
existing Solutions), Support for Abi Color Space, Support for PacBio Native For-
mat, Extend to Distributed Memory Implementation, Check Different Grouping
Strategies.

ERROR CORRECTION AND DENOVO
ASSEMBLY OF NGS DATA

Presented by: Andrei Alic

Supervisor: Ignacio Blanquer Espert

INTRODUCTION

• Next (2nd) Generation Sequencing = New Generation of
Instruments Capable of Reading DNA/RNA

• Increased Through Output and Quality Compared to Sanger
Method (1st gen) => Many Applications: Resequencing,
deNovo Assembly, Metagenomics, Whole Population
Sequencing

• Technologies: Illumina, Pacific Bioscience, Life
Technologies, Roche

Next Generation Sequencing

2

INTRODUCTION

• Data Quantity

• Each Locus in the Genome Sequenced Multiple
Times

• Short Length of Reads

• Datasets with 35bp Reads

• Coverage

• Reads not Uniformly Distributed

• Errors

• Types: Indel (Insertion, Deletion) and Mismatch

Challenges

3

ERROR CORRECTION ALGORITHM

• Currently Only Two Alternatives Support Indels

• Coral (Salmela et Al 2011) and Hshrec (Schroder et Al 2010)

• Low Performance and High Memory Consumption

Our target

• Error Correction Supporting Generic Indels

• High Performance

• Technology Aware (Illumina, 454, Ion Torrent, PacBio)

Objectives

4

ERROR CORRECTION ALGORITHM

• HPGEC Has Two Distinct Steps (Implemented as
Different Programs)

• First Step:

• Grouping Using the Number of Common Kmers

• Kmer = Fixed-Sized Segments of a Read

• Second Step:

• Group Repartitioning using Smith Waterman Local Alignment

• Error Correction for Each Subgroup

Steps

5

ASSEMBLY

• Use Corrected Reads to Generate the Original Genome

• Objectives:

• Distributed, Parallel

• High Performance When Assemble Complex Genomes

• Technology Aware (Use Mix of Different Technologies)

6

ASSEMBLY

• Our Plan:

• Search Overlap of the Subgroups (contigs) Generated by the
Error Correction Mechanism

• Extend the Current Error Correction Mechanism to Support
Distributed Processing

• Implement Relation Between Subgroups (Reads That Can Fit
in Multiple Groups)

7

Thank You!

8

