
acknowledgements

Extensions of Logic Programming (ELP) research group.

Francisco Frechina.

Demis Ballis.

Members of the Extensions of Logic
Programming (ELP) research group.

UPV-FPI 2013 research grant.

Publications

M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Slicing-Based Trace Analysis of Rewriting Logic Specifications with iJu-
lienne. In Proc. of the 22nd European Symposium on Programming (ESOP 2013), volume 7792 of Lecture Notes in
Computer Science (LNCS), pages 121-124. Springer-Verlag, 2013.

M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Parametric Exploration of Rewriting Logic Computations. In Proc. of
the 5th International Symposium on Symbolic Computation in Software Science (SCSS 2013), volume 15 of EasyChair
Proceedings in Computing (EPiC), pages 4-18. EasyChair, 2013.

M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Inspecting Rewriting Logic Computations (in a parametric and step-
wise way). In Proc. of Specification, Algebra, and Software: A Festschrift Symposium in Honor of Kokichi Futatsugi (SAS
2014), volume 8373 of Lecture Notes in Computer Science (LNCS), pages 229-255. Springer-Verlag, 2014.

1 Joint work with María Alpuente, Demis Ballis, and Francisco Frechina.

Universal Debugging

The K-Framework is an operational, Rewriting Logic semantic framework in
which programming languages can be defined using configurations, computa-
tions and rules.

Examples of languages that have been semantically defined in the K-Frame-
work are Beta, C, Esolang, Haskell, IMP, Java 1.4, Javascript, KOOL, Lambda,
LLVM, OCAML, PHP, Python, Scheme, and Verilog.

Once the semantics of a language is defined, it is possible to execute any piece
of code by means of the generated rewriting system.

Therefore, we can apply our techniques to develop the first universal rewrit-
ing-based debugger, which allows the behavior of any program to be analyzed.

Rewriting-Logic-based
Universal Debugger

Trace slice, Program slice, Program animation
Dependence Analysis, State Graph, ...

Program

Execution Trace / Initial State

Language Semantics

Universal Debugger Architecture.

Analyze a program written in any language

by just loading its semantics!

Forward Slicing1

Forward slicing exploration of the
Philosophers problem with Anima.

*

*

Sn...S2S1S0

State

Sliced State

Incrementally
Sliced State

First forward trace slicing technique for Rewriting Logic specifications.

Descendants of the observed data are traced forth.

The slicing criterion can be refined or completely redefined at any state,
resulting in significantly smaller trace slices (incremental slicing).

Implemented using Maude in the Anima Online Stepper, which is pub-
licly available at safe-tools.dsic.upv.es/anima.

Backward Slicing1

Navigation through the trace slice of a
webmail application example in iJulienne.

*

*

Sn...S2S1S0

State

Sliced State

Incrementally
Sliced State

First backward trace slicing technique for Rewriting Logic specifications.

We trace back the antecedents of the observed data.

The slicing criterion can be refined or completely redefined at any state,
resulting in significantly smaller trace slices (incremental slicing).

Implemented using Maude in the iJulienne Online Trace Analyzer,
which is publicly available at safe-tools.dsic.upv.es/iJulienne.

Expected results

Contribute to advance the state of the art in trace analysis of rewriting
logic computations (journal articles and conferences).

Significantly improve the time required to debug a program by provid-
ing the user with efficient techniques and tools to perform the neces-
sary inspection.

Provide existing and future programming languages with a generic,
extensible, modular, and language-independent analysis and debug-
ging framework.

Research plan

Stage 1 (in progress). Research on dependence analysis and slicing
techniques for rewriting logic computations.

Stage 2. Acquaitance with the K-Framework.

Stage 3. Formal development in K of a universal debugger.

Stage 4. Implementation of the universal debugger and experimen-
tal evaluation.

Stage 5. Applications of universal debugging and transformation.

Specific Objectives

Further develop transformation techniques for the inspection and
analysis of rewriting logic (RWL) computations, with particular em-
phasis on efficiency.

Apply these techniques to real languages whose RWL semantics
is formalized in the K-Framework.

Develop the first rewriting-based, universal debugger that can inspect
any program by just loading the correspondent language semantics.

General Objective

New tools and techniques for program debugging and optimization
based on automated transformation of programs and computations.

Motivation

According to recent Cambridge University research, the global cost of
debugging software has risen to $312.000 millions by 2013.

On average, software developers spend 50% of their programming
time finding and fixing bugs.

Execution traces are an important source of information for program
understanding and debugging.

However, software systems commonly generate large and complex ex-
ecution traces whose analysis is extremely time-consuming and even
unfeasible to perform without adequate tool support.

Trace slicing is an automated transformation technique that can drasti-
cally reduce the size and complexity of execution traces by tracking de-
pendences and causality along the traces and by removing irrelevant
information that does not affect or is affected by the observed data.

By greatly reducing the size of execution traces while keeping all the
relevant information, the effort required to find and correct an error
can be significantly lowered because many irrelevant inspections that
occur during diagnosis and bug localization can be automatically
avoided.

jsapina@dsic.upv.es
JULIA SAPIÑA SANCHIS

Ph.D. Student

alpuente@dsic.upv.es
MARÍA ALPUENTE FRASNEDO

Supervisor

REWRITING LOGIC TECHNIQUES FOR

PROGRAM ANALYSIS AND OPTIMIZATION

INFORMÁTICOS Y COMPUTACIÓN
DEPARTAMENTO DE SISTEMAS

Doctorado en Informática
RD 99/2011

