

Model-based analysis and metabolic design of a cyanobacterium for bio-products synthesis

Autor: Julián Triana Dopico¹ **Directores:** Arnau Montagud Aquino², Pedro Fernández de Córdoba Castellá³, Javier Urchueguía Schölze³ **Colaboradores:** Daniel Gamermann^{4,} Maria Siurana³, David Fuente³, Arantxa Urchueguía³ **Programa de doctorado:** Matemática Aplicada

¹Universidad de Pinar del Río, Cuba; ²Institut Curie, Francia; ³Universidad Politécnica de Valencia, España; ⁴Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

<u>Abstract</u>

The current investigation is aimed at the reconstruction and analysis of genome-scale metabolic models. Specifically, it is focused on the use of mathematicalcomputational simulations to predict the cellular metabolism behavior towards bio-products production, such as: ethanol, higher alcohols, lipids and hydrogen.

<u>Main Objectives</u>

- 1. Reconstruct a genome-scale metabolic model for Synechococcus elongatus PCC7942.
- 2. Validate reconstructed metabolic models for Synechococcus elongatus PCC7942.
- 3. Analyze environmental and genetic variations imposed on the metabolic network under a systemic perspective.
- 4. Define strategies for the production of substances of socioeconomic importance through metabolic engineering designs.

The photosynthetic cyanobacterium *Synechococcus elongatus* PCC7942 was studied as biological system.

Main Steps

PII of Synechococcus elongatus*

5. Analyze the discrete metabolic phenotypes

6. Integrate transcriptomics data into metabolic model

1. Genome-Scale Metabolic Model Reconstructions and Constraint-Based Analysis

Draft file from Pathways Tools	Number of reactions
Genes	672
Enzymes	540
Multimeric enzymes	98
Reactions	898
<i>i</i> Syf714 metabolic model	
Number of genes	714
Number of metabolic reactions	849
Number of metabolites	838
Enzymes	529
Multimeric enzymes and complexes	79
Reactions overview	
Reversible reactions	325
Irreversible reactions	524
Reactions with assigned genes	734
Enzymatic conversion	709
Protein-mediated transport	25
Reactions with no cognate genes	115
Non-enzymatic conversion	13
Transport reactions	16
EC reactions not annotated	76
Unassigned reactions	11

Calvin-Benson Cycle

Reconstruction Procedure

Flux Balance Analysis Variability and Robustness Analysis

2. Assessment of Metabolic Capabilities

Single, double and triple knock-out strategies for the bio-products synthesis, simulated by Minimization of Metabolic Adjustment (MOMA) algorithm

3. Phenotypic phase plane analysis

4. Metabolome dynamic upon Ci** acclimation

CO₂ and light phenotype phase plane for each bio-products

•From Voet D, Voet JG. (2004) Biochemistry. 3rd Ed. John Wiley & Sons, New York.