Geometric integrators for Schrödinger equations

Philipp Bader

Instituto de Matemática Multidisciplinar, 2014 (not for external use)
ntroduction
We study a variety of Schrödinger equations and propose efficient geometric integrators for their solution. A geometric integrator preserves some qualitative properties of the exact solution, e.g., norm (unitarity), Gauge-invariance, energy, etc.

- Time-dependent
(with Blanes)

$$
i \frac{\partial}{\partial t} \Psi(x, t)=H \Psi(x, t) \equiv(-\Delta+V(x)) \Psi(x, t), \quad \Psi(x, 0)=\psi_{0}(x)
$$

■Semi-classical (with Iserles, Kropielnicka, Singh)

$$
i \hbar \frac{\partial}{\partial t} \Psi(x, t)=H \Psi(x, t) \equiv\left(-\hbar^{2} \Delta+V(x)\right) \Psi(x, t), \quad \Psi(x, 0)=\Psi_{0}(x)
$$

■Stationary
(with Blanes, Casas)

$$
E \Psi(x)=(-\Delta+V(x)) \Psi(x), \quad \Psi(x, t)=\Psi(x) e^{i E t}
$$

■Nonlinear
(with Blanes)

$$
i \frac{\partial}{\partial t} \Psi(x, t)=\left(-\Delta+V(x)+g|\Psi(x, t)|^{2}\right) \Psi(x, t), \quad \Psi(x, 0)=\psi_{0}(x)
$$

Tools

The following concepts have been used in the derivation of new algorithms
\square Lie-algebras
-Splitting

$$
\dot{y}=A(y)+B(y) \Longrightarrow y(h)=\prod_{k=1}^{s} e^{h b_{k} B} e^{h a_{k} A} y_{0}+\mathcal{O}\left(h^{p+1}\right) .
$$

- BCH formula

$$
e^{A} e^{B}=e^{B C H(A, B)}=e^{A+B+\frac{1}{2}[A, B]+\frac{1}{12}([A,[A, B]]-[B,[A, B]])+\cdots}
$$

-Magnus expansion

$$
\begin{aligned}
& \dot{y}=H(t) y \Longrightarrow y(h)=e^{\Omega_{h}} y_{0} \\
& \Omega_{h}=\int_{0}^{h} H\left(t_{1}\right) d t_{1}+\frac{1}{2} \int_{0}^{h} \int_{0}^{t_{2}}\left[H\left(t_{1}\right), H\left(t_{2}\right)\right] d t_{1} d t_{2}+\ldots
\end{aligned}
$$

The Standard Schrödinger equation

$$
i \frac{\partial}{\partial t} \psi(x, t)=\left(-\partial_{x}^{2}+V(x, t)\right) \psi(x, t), \quad \Psi(x, 0)=\Psi_{0}(x)
$$

Asymptotic boundary conditions

Splitting and Fourier transforms

$$
\psi(x, h)=\prod_{k=1}^{s} e^{h b_{i} \tilde{V}_{k}} e^{h a_{i} T} \psi_{0}+\mathcal{O}\left(h^{p+1}\right),
$$

$\Rightarrow T=-\partial_{x}^{2}$ is diagonal in Fourier space.
\Rightarrow Magnus or evolve time with $T, \tilde{V}_{k}=V\left(\sum_{j}^{k} a_{j}\right)$.

Algebraic properties

$V=x^{2}$ or $V=f(t) x$ generate finite dimensional algebras:

$$
\left\{p^{2}, x^{2}, p x\right\}, \quad\left\{p^{2}, p, x, 1\right\}
$$

Key ingredient: $\quad \mathbf{C M} \leftrightarrow \mathbf{Q M}$ as $\{\cdot, \cdot\} \leftrightarrow i[\cdot, \cdot]$

Example: Harmonic oscillator

$$
e^{-i h\left(T+x^{2}\right)}=e^{-i f(h) T} e^{-i g(h) x^{2}} e^{-i f(h) T}=e^{-i f(h) x^{2}} e^{-i g(h) T} e^{-i f(h) x^{2}}
$$

with $f(h)=\tan (h / 2), g(h)=\sin (h)$.

Generalizations

$$
H=p_{x}^{2}+p_{y}^{2}+x^{2}+y^{2}+\left(y p_{x}-x p_{y}\right)+x p_{x}+y p_{y}+x+y .
$$

Semi-classical Schrödinger equation

$$
i \frac{\partial}{\partial t} \Psi(x, t)=\left(-\varepsilon \partial_{x}^{2}+\frac{1}{\varepsilon} V(x, t)\right) \Psi(x, t)
$$

\Rightarrow Highly oscillatory: $\varepsilon \sim \hbar$ vs. $\varepsilon \sim 1$
Key ingredients: sBCH , expansion $h \sim \varepsilon^{\sigma}$, derivatives

$$
e^{h(X+Y)}=e^{h / 2 X} e^{s B C H(h X, h Y)} e^{h / 2 X},
$$

Example:

$$
e^{-i h H}=e^{\mathcal{R}_{0}} e^{\mathcal{R}_{1}} e^{\mathcal{R}_{2}} e^{\tau_{3}} e^{\mathcal{R}_{2}} e^{\mathcal{R}_{1}} e^{\mathcal{R}_{0}}+\mathcal{O}\left(\varepsilon^{7 \sigma-1}\right)
$$

where $\mathcal{R}_{0}=\frac{1}{2} \tau \varepsilon \partial_{x}^{2} \sim \varepsilon^{\sigma-1}, \mathcal{R}_{1}=\frac{1}{2} \tau \varepsilon^{-1} V \sim \varepsilon^{\sigma-1}, \mathcal{R}_{2} \sim \varepsilon^{3 \sigma-1}$

- Linear growth of no. of exp. - separation of scales $\left(\sim \varepsilon^{k}\right)$ Generalization to $V(t)$ by Magnus expansion

Imaginary time Schrödinger equation

Eigenvalue problem

$$
E \Psi(x)=(-\Delta+V(x)) \Psi(x)
$$

Expansion in eigenstates

$$
\Psi(x, t)=e^{-i t H} \Psi(x, 0)=\sum_{n \in 1} e^{-i t \lambda_{n}}\left\langle\phi_{n} \mid \Psi_{0}\right\rangle \phi_{n}(x)
$$

Imaginary time propagation, $t=-i \tau$:

$$
\Psi(x,-i \tau) \rightarrow e^{-\tau \lambda_{0}}\left\langle\phi_{0} \mid \Psi_{0}\right\rangle \phi_{0}(x), \quad\left(0 \leq \lambda_{i} \leq \lambda_{i+1} \leq \ldots\right)
$$

Splitting

- Parabolic equation
\rightarrow order restriction
- complex coefficient
\rightarrow higher order

Modified potentials [Koseleff]

Central observation:

$$
\left[V,\left[V, \partial_{x}^{2}\right]\right]=-2\left(V^{\prime}(x)\right)^{2}
$$

diagonal in coordinate space, thus

$$
e^{-\tau H}=\prod e^{-a_{i} \tau \Delta} e^{-b_{i} \tau V-c_{i} \tau^{3}\left(V^{\prime}\right)^{2}}+\mathcal{O}\left(h^{p+1}\right)
$$

\rightarrow up to order 4 with positive real coefficients [Chin 2005].
(Higher order with complex time-step (pos. real part))

Gross-Pitaevskii equation

$$
i \frac{\partial}{\partial t} \Psi(x, t)=\left(-\Delta+V(x)+g|\Psi(x, t)|^{2}\right) \Psi(x, t)
$$

■Near-linear equation for $g \ll 1$, relevant terms

$$
A=-\Delta+V, B=|\psi|^{2} \Longrightarrow g[A,[A, B]], \quad g[A,[A,[A,[A, B]]]]
$$

\square Real time: Real coeff. for Δ and $\partial_{t}|\psi|^{2}=0$ or $\left(c=g / b_{k}\right)$

$$
\begin{array}{lrl}
\text { Norm: } & \partial_{t}|\Psi|^{2} & =2 \Re(c)|\psi|^{4}, \\
\text { Phase: } & \partial_{t} \log (\Psi)=c|\psi|^{2}
\end{array}
$$

- Imaginary time (work in progress)
\Rightarrow real coefficients for B, complex coeff. for A
\Rightarrow all complex (see above)
\Rightarrow order reductions observed

References

- with S. Blanes

Fourier methods for the perturbed harmonic oscillator in linear and nonlinear
Schrödinger equations
Phys. Rev. E 83, 046711 (2011)
with A. Iserles, K. Kropielnicka, P. Singh
Effective approximation for the semi-classical Schrödinger equation
Found. Comput. Math. 2014
with S. Blanes, F. Casas,
Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients J. Chem. Phys. 2013

