

fatalia

Centro de Investigación ProS Future Doctoral Works

I+D in Personalized Genomic Medicine

- 1. Problem Statement
- 2. Background
- 3. Goals
- 4. Projects
- 5. Ontology and GelS
- 6. GelS for Breast Cancer
- 7. Wiki-Genome
- 8. Doubts

- Lots of highly complex data
- Heterogeneous data storage
- Unwanted redundancy

Inconsistencies among the data sources

Genetic data generation

Gene

1

- Conceptual Schema of Human Genome
- Human Genome Data Base
- Genome Information System

- Defining a genomic domain by using ontologies and conceptual models
- Designing and implementing a Genomic Information System (GeIS)
- Specifying of the GeIS for a particular disease (Breast Cancer)
- Designing and implementing a genomic data management system

- Human Genome Conceptual Modeling: A Ontological Framework for the Design and Implementation of Gels
- Design and Development of a GeIS to Manage Breast Cancer Data
- Wiki-Genome: A Model-Driven Genomic Data Management
 Environment

Human Genome Conceptual Modeling: An Ontological Framework for the Design and Implementation of GeIS

Ainoha Martín Mayordomo

- Main goal of the work: design and implementation of a GeiS:
 - Conceptual model
 - Ontology
 - Versioning system
 - Database
 - Loading strategies

Versioning System

Why use relational databases?

- Widely used
- Provides neccesary technology to lead with large amount of data
- Non-redundant and structured organization of data
- Language SQL to retrieve and store information

Why use Oracle?

- Most used
- Work in all platforms
- Good management users

•••

· ...

ETL strategy

↑ independency

↑ flexibility

↑ scalability

Design and Development of a Genomic Information System to Manage Breast Cancer Data

Verónica Burriel Coll

Why Breast Cancer?

Incidence of Breast Cancer in women society

- Data about Breast Cancer
 - The molecular characterization of BRCA1 and BRCA2 is complex
 - Large size
 - High density of mutations
 - Information is distributed by multiple databases
 - General genomic databases
 - Specific genomic databases
 - Genes
 - Diseases

Proposed Methodology

Proposed Methodology

- List of relevant databases
- Deep study of each database
- Load the data about breast cancer contained
- Extract the information not represented at CSHG
- Extends the CSHG with new views
- Update the HGDB following the CSHG's changes
- Load the information on the updated database
- Proof of concept

List of relevant databases

- Meetings with geneticists and clinicians
- Classification of the databases

- Deep study of each database
 - Database structure
 - Contained information
 - Relevant information
 - Data formats
 - Data quality

dbSNP Short Genetic Variations

Proposed Methodology

Load the contained data about breast cancer

- Specific load modules for each database
- Extract the relevant information

Extract the information not represented in CSHG

- Information which can't be inserted in HGDB
- Select and study the environment

- Update the HGDB following the CSHG's changes
 - New HGDB's scheme extracted from CSHG
- Load the information on the updated database
 - Adapt the load modules

Proof of concept: FutureClinic's Database

A reduced view adapted for the project purposes.

Wiki-Genome: A Model-Driven Genomic Data Management Environment

Ana María Martínez Ferrandis

Audience and Goals

- Experts geneticists
- Information extraction
 - Documentation and bibliography
- Linking genes and phenotypes
- Introducing new data

Wiki & Biology

The beggining...

Wikipedia consistent

- Ex: Gene Viki, Topsan, WikiGenes,
 Wiki WikiPa way, Wiki Professional...
 - Without random Without

Wiki & Ontology

- BOWiki based on GFO BO
- Background knowledge + reasoners
 - Limited automatic data review

Wiki-Genome

- Overcome previous limitations (Wikipedia)
- Solving coherent and consistency problems
 - Using Ontology based on GFO
- Automatic data review + Curator
- Implementation
 - OWL-DL
 - JENA
 - R20
 - SPARQL

Thank you!!!

Any doubt?

