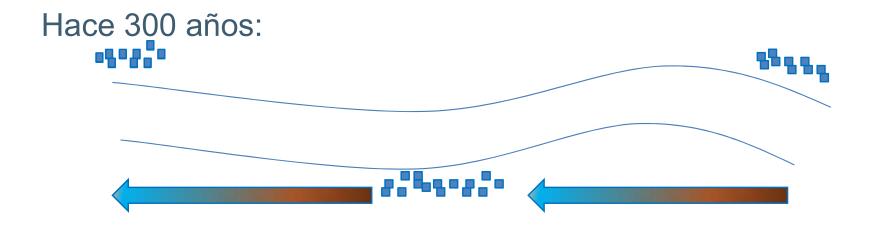


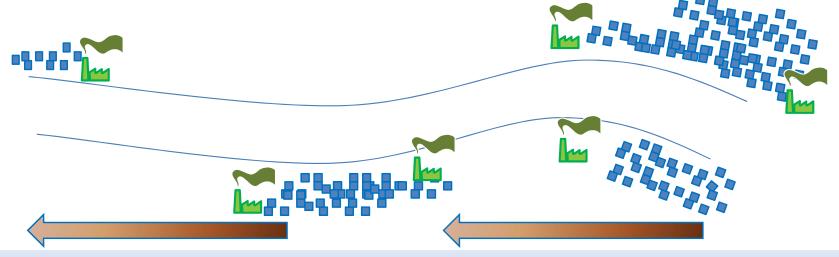
La Entidad de Saneamiento y la Economía Circular

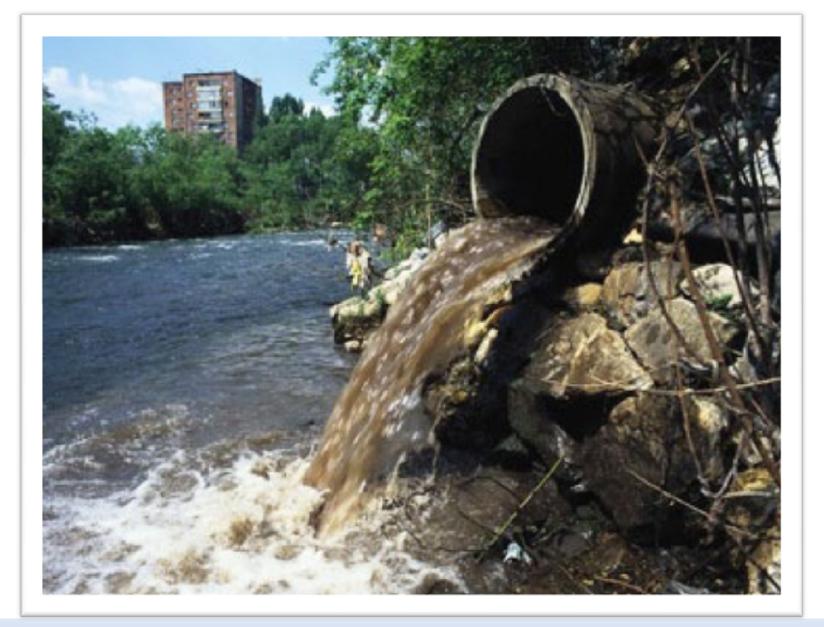
Marzo 2018

Índice

- 1. El agua y la depuración
- 2. Evolución histórica
- 3. Entidad Pública de Saneamiento de Aguas
 - 3.1. Indicadores de depuración de la C.V.
 - 3.2. Instalaciones de depuración en la C.V.
- 4. Economía circular
 - 4.1. Reutilización del agua depurada
 - 4.2. Valorización de lodos generados
 - 4.3. Valorización de biogás
- 5. Otras tecnologías







Tras la Revolución Industrial:

EPSAR
Entitat de
Sanejament d'Aigües

MODELOS DE GESTIÓN DE LAS AGUAS RESIDUALES

¿Quién construye las depuradoras? ¿Cómo se financian?

¿Quién opera y mantiene las depuradoras? ¿Cómo se financia la operación y mantenimiento?

¿Qué ocurría antes del año 1986?

¿Quién construía las depuradoras?

GOBIERNO DE ESPAÑA

Municipios grandes: tenían capacidad técnica y financiera

Municipios medianos y pequeños: sin capacidad técnica ni financiera

EDAR EN MARCHA
EDAR PARADA STOP

¿Qué ocurría entre 1986 y 1992?

1986: las CC.AA. recogen competencias en materia depuración

¿Quién construía las depuradoras?

GOBIERNO DE ESPAÑA

COMUNIDADES AUTÓNOMAS

¿Quién operaba las depuradoras?

ADMINISTRACIÓN LOCAL

RESULTADO

Municipios grandes: tenían capacidad técnica y financiera

Municipios medianos y pequeños: sin capacidad técnica ni financiera

EDAR EN MARCHA
EDAR PARADA STOP

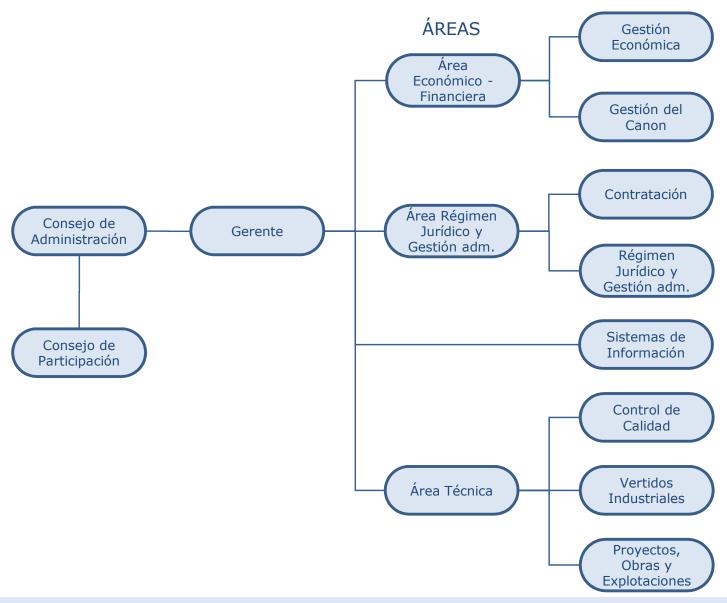
- ✓ La Comunidad Valenciana ejerce competencias en materia de saneamiento y depuración de aguas residuales desde el año 1986. RD 1871/85.
 - En 1986 sólo el 31% de la población disponía de tratamiento de aguas residuales.
 - El 70% de las instalaciones no funcionaban.
 - No estaba garantizado que las infraestructuras ejecutadas se mantuviesen adecuadamente.

- A principios de los 90, la Generalitat, tomando conciencia de la pérdida de eficacia del instrumento elegido, y a la vista de las experiencias iniciadas en otras Comunidades Autónomas, decidió cambiar su manera de actuar y ensayar una forma de gestión más eficaz.
- Esta nueva forma de gestión implica un cambio en las relaciones entre las diferentes Administraciones implicadas, un nuevo esquema organizativo (la EPSAR) y un nuevo régimen que garantice la suficiencia financiera a la acción pública.

LEY de Saneamiento de las Aguas Residuales de la Comunidad Valenciana

LEY 2/92 DE SANEAMIENTO

- Pretende consolidar el funcionamiento de las EDAR actuales y futuras.
- Sus ejes principales son:
 - Garantizar la explotación de las EDAR.
 - Garantizar una actuación coordinada y eficaz entre las administraciones con competencias.
 - Ejecutar las obras de saneamiento necesarias.
 - Establecer el Canon de Saneamiento.
 - Crear la Entidad de Saneamiento de Aguas.



DEPARTAMENTOS

Funciones de la Entidad de Saneamiento:

- Recaudar, gestionar y distribuir el Canon de Saneamiento.
- ✓ Ejecutar las obras de abastecimiento, saneamiento, depuración y en su caso reutilización, que la Generalitat determine.
- Gestionar la explotación de las instalaciones públicas de saneamiento y depuración de aguas residuales.

Las instalaciones de saneamiento y depuración pueden ser de:

- Titularidad pública
- ✓ Titularidad privada (urbanizaciones, club deportivos...)

La EPSAR financia 482 instalaciones públicas con cargo al Canon de Saneamiento:

✓ Gestiona 184 instalaciones:

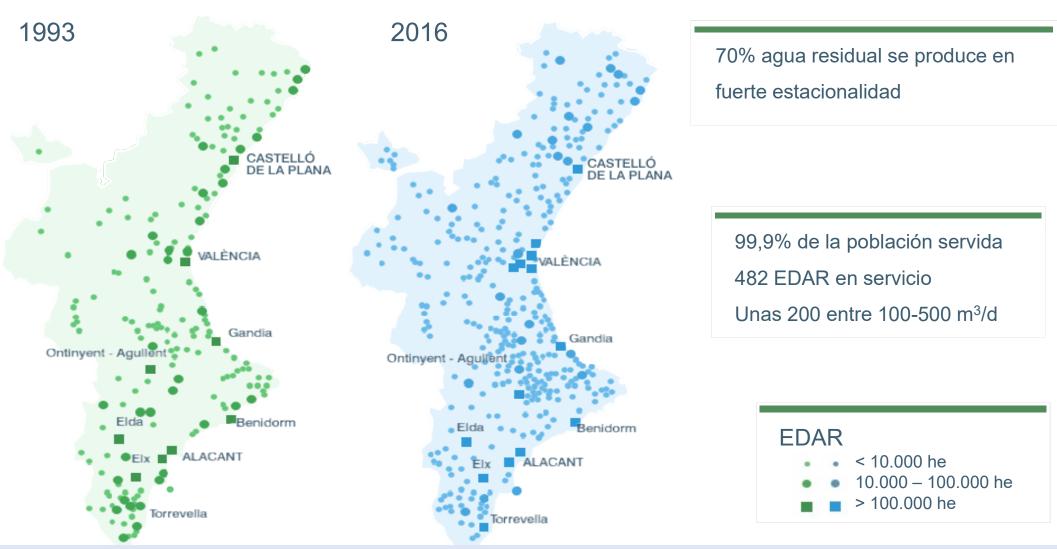
La gestión se lleva a cabo mediante contratos de servicio según la Ley de Contratos del Sector Público.

✓ Financia 298 instalaciones gestionadas por sus titulares:

Financia los costes de explotación conforme al Decreto 9/1993, de 25 de enero del Gobierno Valenciano.

Principales magnitudes:

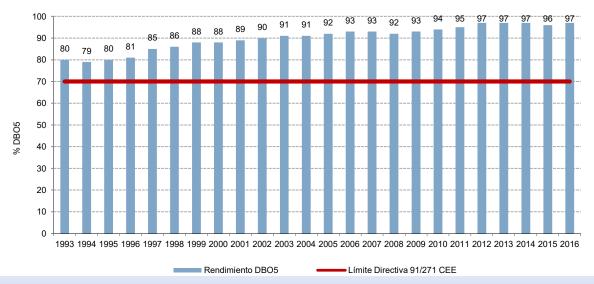
	Año 1993	Año 2009	Año 2016
Número EDARs	155	443	482
Canon de Saneamiento (millones €)	37	211	274
Gastos de explotación (millones €)	30	188	157
Inversión realizada (millones €)	23,5	94,8	9,9
Volumen de agua depurada (hm³/año)	269	503	421
Fangos producidos (miles de toneladas)	199	496	368


En total, más de 1.300 millones de euros invertidos

3.1 Indicadores de depuración en la Comunidad Valenciana

Sistemas de saneamiento y depuración: Colectores generales y EDAR

Indicadores de depuración en la Comunidad Valenciana


Distribución por provincias

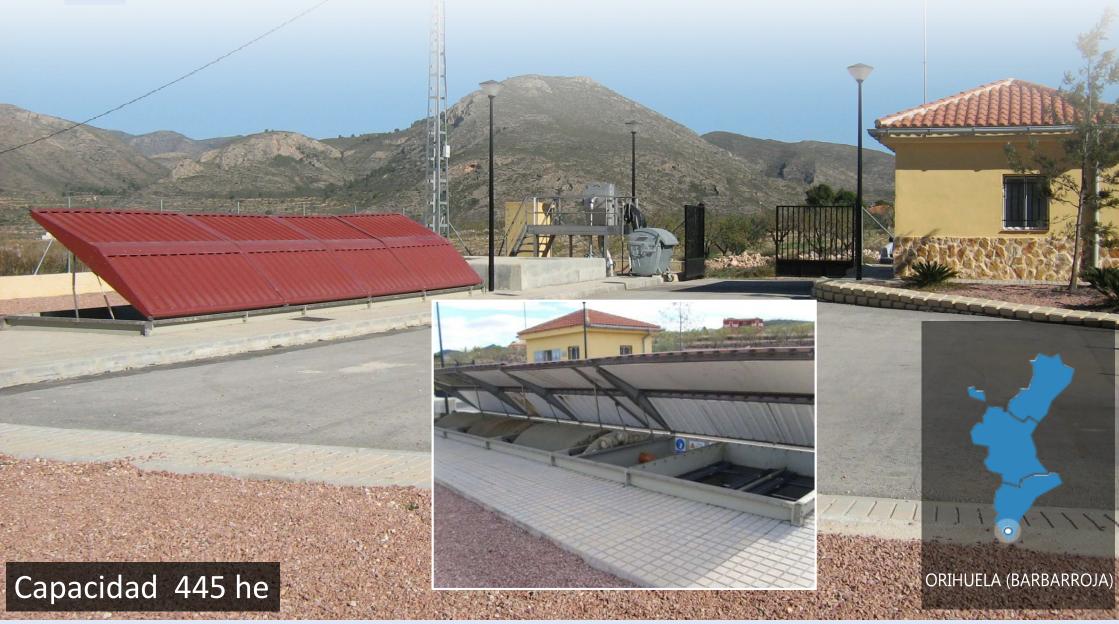
Datos de calidad de las aguas depuradas para 2016

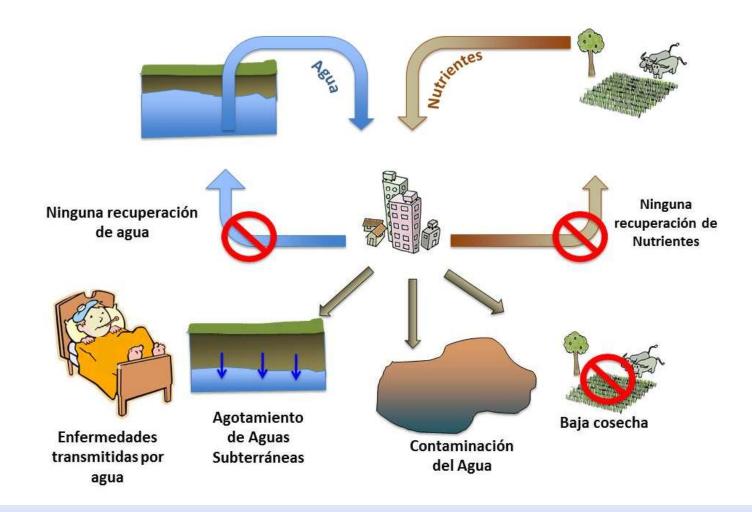
	Instalaciones en servicio	Caudal tratado (hm³/año)	he tratados	
Alicante	171	122,71	2.439.795	
Castellón	117	52,29	569.893	
Valencia	194	246,13	2.926.495	
TOTAL	482	421,13	5.923.770	

Parámetro	Límite SS ⁽¹⁾	SS	Límite DBO ₅ ⁽¹⁾	DBO ₅	Límite DQO ⁽¹⁾	DQO
Entrada (mg/l)		286		310		592
Salida (mg/l)	≤ 35	8	≤ 25	8	≤ 125	35
Rendimiento (%)	≥ 90	96	≥ 70	97	≥ 75	93

Rendimiento de eliminación de DBO₅

(1) Valor límite establecido en la Directiva del Consejo 91/271 CEE




4 Economía circular

Economía circular

Visión lineal de la depuración de aguas

4

Economía circular

Visión lineal de la depuración de aguas

- ✓ El agua residual es un deshecho que contamina y transmite enfermedades
- ✓ Hay que reducir la contaminación en el agua antes de verterla al mar/cauce.

✓ Todos los subproductos de una EDAR son deshechos que han de

ir a vertedero.

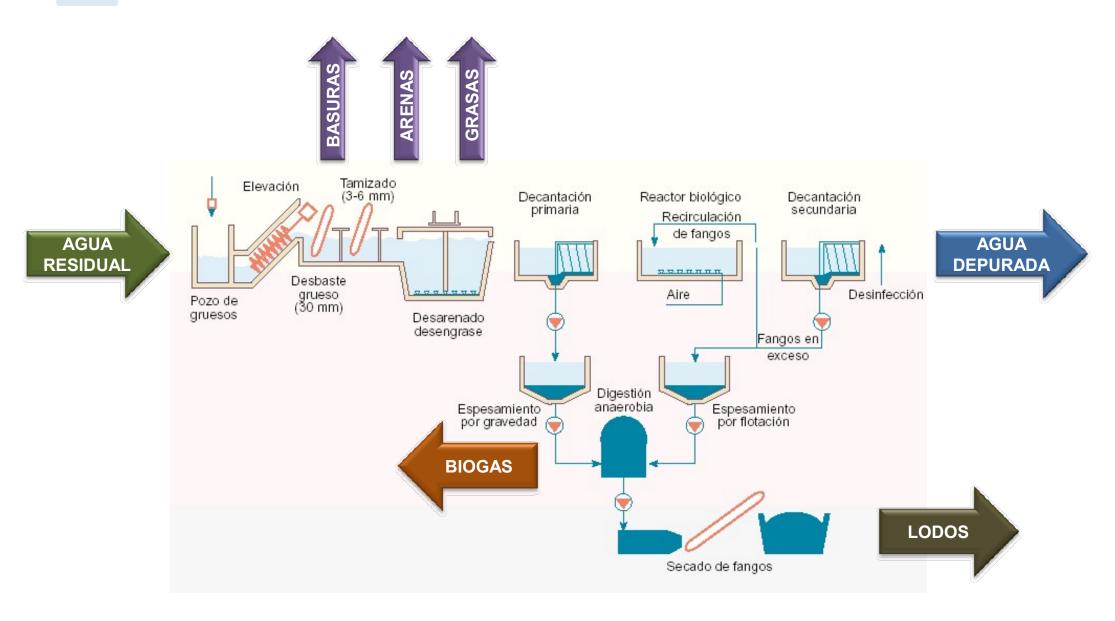
Economía circular

Visión circular de la depuración de aguas

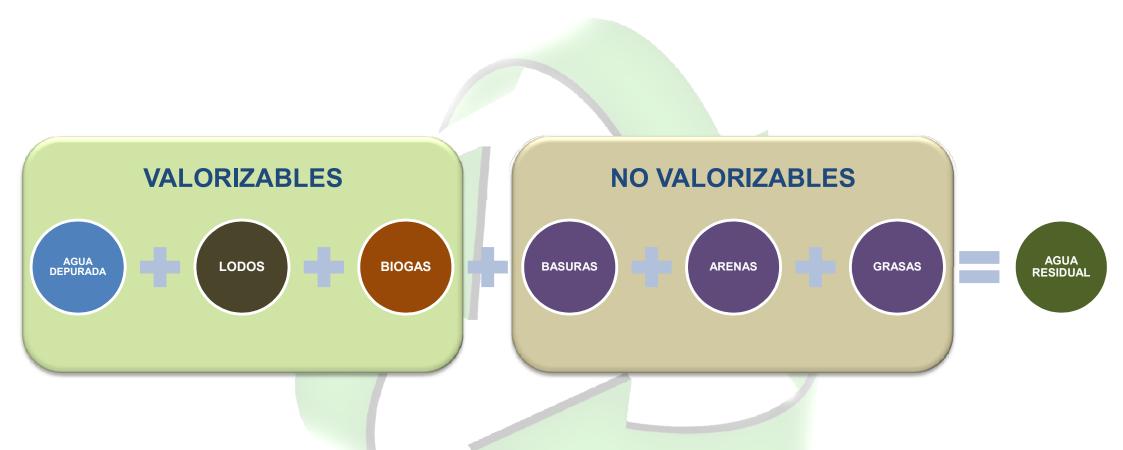
Economía circular

Visión circular de la depuración de aguas

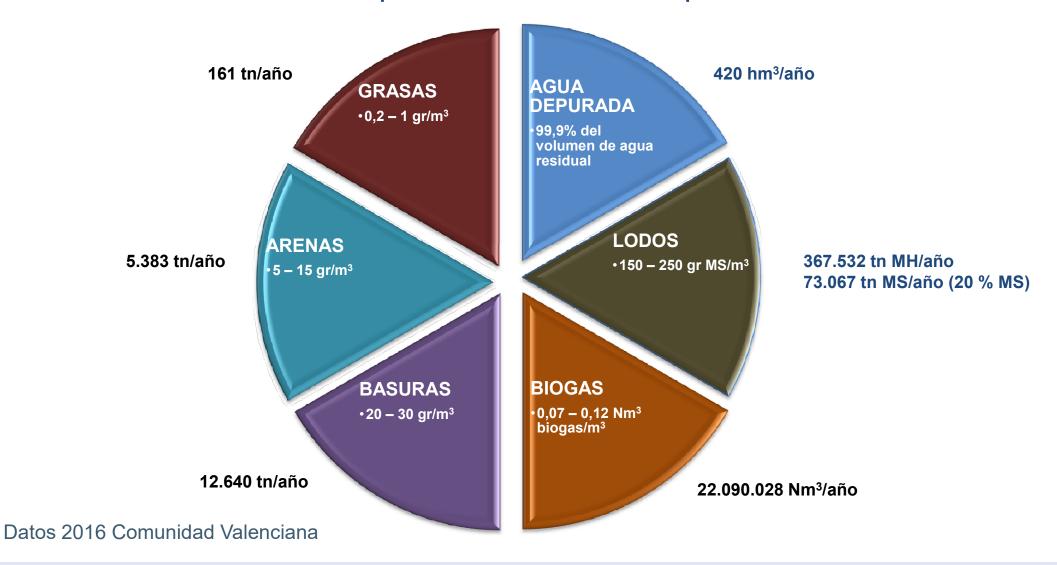
- ✓ El agua residual es una materia prima con un potencial de aprovechamiento muy elevado
- ✓ Los subproductos obtenidos del proceso de depuración también se pueden utilizar como materias primas para otros procesos productivos
- ✔ Desde el momento del diseño del sistema de saneamiento se pretende potenciar el reciclaje y la reutilización



4


Economía circular

Economía circular



Economía circular

Elementos producidos en una depuradora

Economía circular.

ELEMENTOS VALORIZABLES

AGUA DEPURADA

- USO AGRÍCOLA
- USO INDUSTRIAL
- USO URBANO
- USO RECREATIVO
- USO AMBIENTAL

LODOS

- AGRICULTURA (APLICACIÓN DIRECTA O COMPOSTAJE)
- VALORIZACIÓN ENERGÉTICA
- RELLENO DE CANTERAS
- OTROS USOS

BIOGAS

- PRODUCCIÓN CALOR (CALDERAS)
- PRODUCCIÓN ENERGÍA Y CALOR (COGENERACIÓN)
- OTROS USOS (BIOGAS AUTOMÓVIL, INYECCIÓN EN RED GAS)

Economía circular.

ELEMENTOS VALORIZABLES

AGUA DEPURADA

- USO AGRÍCOLA
- USO INDUSTRIAL
- USO URBANO
- USO RECREATIVO
- USO AMBIENTAL

LODOS

- AGRICULTURA (APLICACIÓN DIRECTA O COMPOSTAJE)
- VALORIZACIÓN ENERGÉTICA
- RELLENO DE CANTERAS
- OTROS USOS

BIOGAS

- PRODUCCIÓN CALOR (CALDERAS)
- PRODUCCIÓN ENERGÍA Y CALOR (COGENERACIÓN)
- OTROS USOS (BIOGAS AUTOMÓVIL, INYECCIÓN EN RED GAS)

Usos establecidos para el agua regenerada (RD 1620/2007)

URBANOS

- 1.1 Usos residenciales Riego jardines privados; descarga de aparatos sanitarios
- 1.2 Servicios urbanos Riego de zonas verdes; Baldeo de calles: Sistemas contra incendios: Lavado industrial de vehículos

2. RIEGO AGRÍCOLA

- 2.1 Contacto directo del agua con partes comestibles
- 2.2 Productos cuyo consumo se realiza después de un tratamiento posterior; Pastos para consumo de animales productores de carne o leche
- 2.3 Cultivos leñosos; Flores ornamentales; Viveros e invernaderos; Cultivos industriales, forrajes, cereales y semillas oleaginosas

3. INDUSTRIALES

- 3.1.a. Aguas de proceso y limpieza excepto industria alimentaria: Otros usos industriales
- 3.1.b. Aguas de proceso y limpieza de la industria alimentaria
- 3.2 Torres de refrigeración y condensadores evaporativos

4. RECREATIVOS

- 4.1 Riegos de campos de golf
- 4.2. Estanques, caudales circulantes ornamentales a los que está impedido el acceso del público al agua

5. AMBIENTALES

- 5.1 Recarga de acuíferos por percolación a través del terreno
- 5.2 Recarga de acuíferos por inyección directa
- 5.3 Riego de bosques y zonas verdes; Silvicultura
- 5.4 Otros usos ambientales: mantenimiento de humedales; caudales mínimos y similares

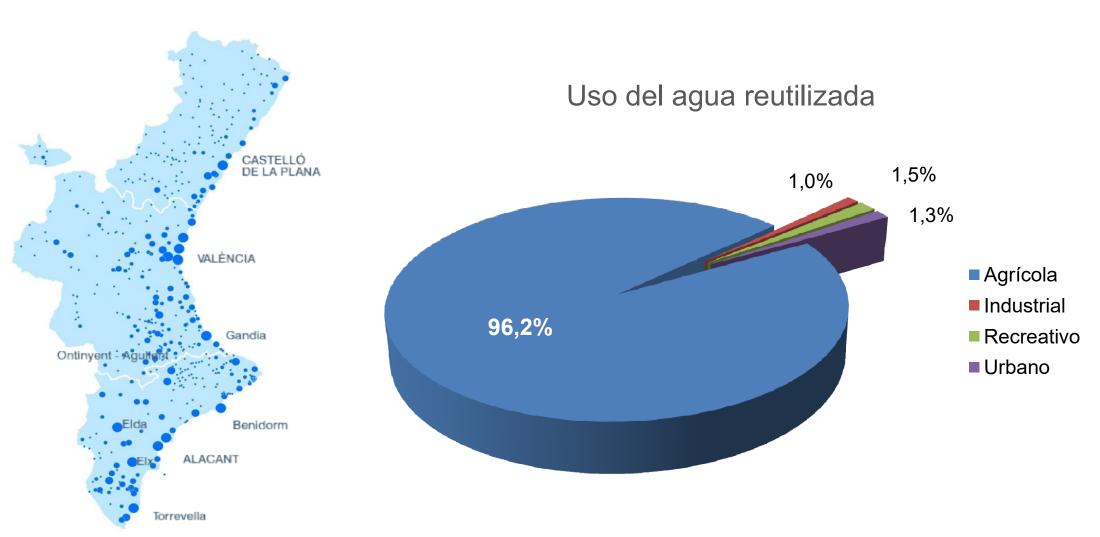
USO	Nemátodos (huevo/10 l)	e. coli (ufc/100 ml)	SS (mg/l)	Turbidez (UNT)	
Usos urbanos					
1.1	1	0	10	2	
1.2	1	200	20	10	
		Usos agrícolas			
2.1	1	100	20	10	
2.2	1	10.00	35	No se fija	
2.3	1	10.000	35	No se fija	
Usos industriales					
3.1.a	No se fija	10.000	35	15	
3.2.b	1	1.000	35	No se fija	
3.2	1	Ausencia	5	1	
Usos recreativos					
4.1	1	200	20	10	
4.2	No se fija	10.000	35	No se fija	
Usos ambientales					
5.1	No se fija	1.000	35	No se fija	
5.2	1	0	10	2	
5.3	No se fija	No se fija	35	No se fija	
5.4	La calidad mínima requerida se fijará por caso				

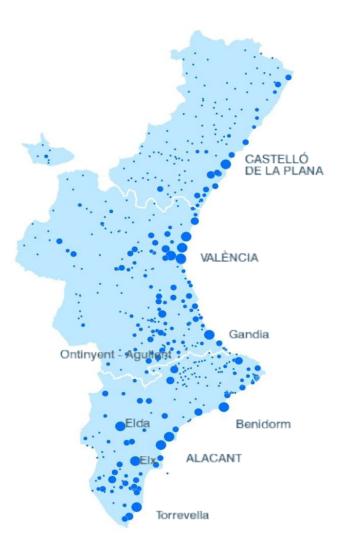
TIPOS DE TR	ATAMIENTO		EDAR	
BIOLÓGICO	Sin desinfección	27	' 3	
BIOLOGICO	Con desinfección	165		
BIOLÓGICO TERCIARIO	UF + OI	2		
	Convencional	31		482
	MBR	5	44	
	Infiltración	3		
	Humedal	3		

Terciario Convencional

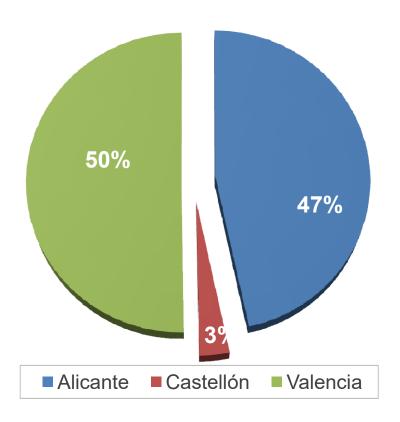
FÍSICO – QUÍMICO

•Eliminación de sólidos coloidales y en suspensión


FILTRACIÓN


•Eliminación de sólidos en suspensión

DESINFECCIÓN


•Eliminación de contaminación microbiológica

Distribución por provincias del aprovechamiento de agua depurada

Calidad agua tratada. Parámetros físico - químicos

TIPO TRATAMIENTO	Turbidez (UNT)	SS (mg/l)	DBO ₅ (mg/l)	DQO (mg/l)
RD 509/1996	-	35	25	125
AGUA TRATADA	5	8	8	35
RD 1620/2007 (C.2.1.)	10	20	-	

TIPO TRATAMIENTO	Turbidez (NTU)	SS (mg/l)	DBO ₅ (mg/l)
SIN TERCIARIO	4,9	7,0	7,0
CON TERCIARIO	4,6	6,4	8,3

CONSIDERACIONES TÉCNICAS

- La tecnología actual permite obtener cualquier calidad de agua regenerada, incluso agua con calidad potable. La pregunta es ¿cuánto estamos dispuestos a pagar por la inversión y la operación? ¿Qué balance coste/beneficio tenemos?
- Nivel de desinfección habitual (uso 2.1) Escherichia coli < 100 ufc/100 ml. Los UV por si mismo no pueden asegurar, con fiabilidad, un nivel de desinfección inferior a ese valor.
- En los últimos 5 años se han realizado 7.189 análisis de Nemátodos intestinales en la Comunidad Valenciana (coste superior a los 500.000 €). Sólo el 0,5 % ha dado > 1 huevo/10 l. Parámetro caro de analizar y que no aporta información útil
- Coste para el agricultor de cumplimiento del plan de análisis del RD 1620/2007 superior a los 5.000 €/año.

CRITERIOS DE LA EPSAR PARA EL DISEÑO TRATAMIENTO REGENERACIÓN USO 2.1 - RD 1620/2007

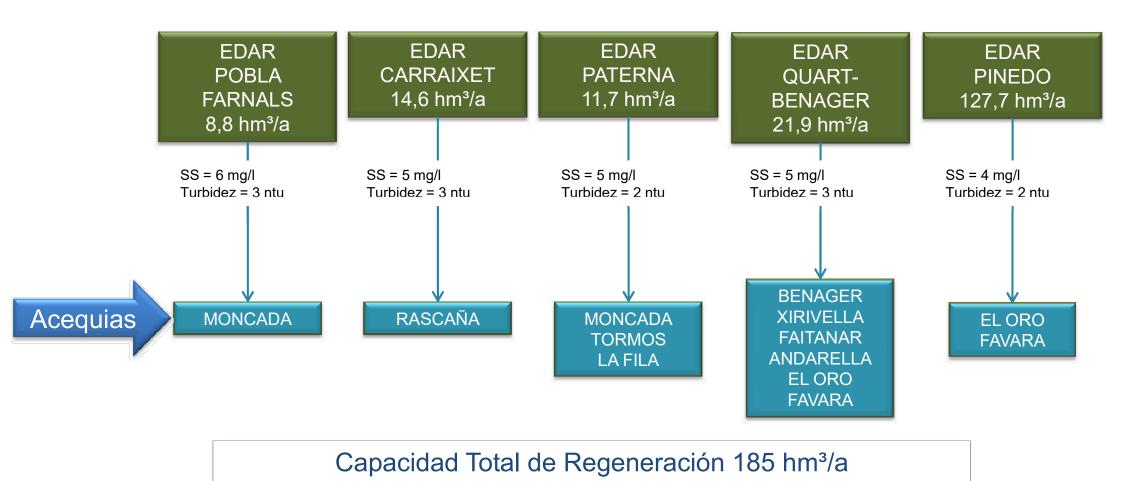
- Tratamiento biológico con eliminación nutrientes (asegura turbidez < 10 NTU)
- Decantador secundario. Velocidad ascensional < 0,4 m/h a caudal medio (asegura SS < 10-15 ppm)
- No es necesario tratamiento físico químico previo a la filtración
- Filtro de telas o de malla (barrera física de seguridad)
- Desinfección mediante UV (asegura Escherichia coli < 100 ufc/100

EDAR Alacantí Norte. Decantación lamelar

EDAR Sueca. Desinfección UV

EDAR Pinedo. Filtración en arena

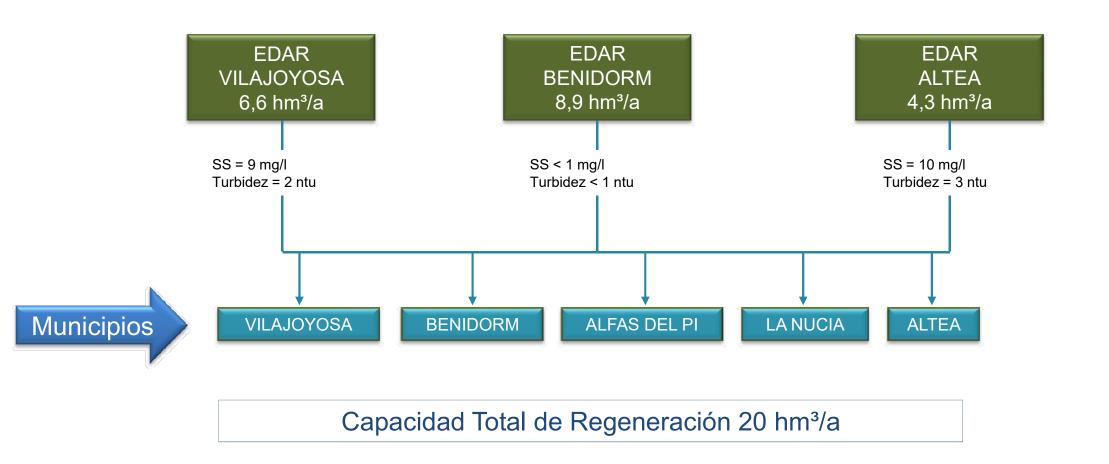
EDAR Valle del Vinalopó. Infiltración - percolación



4.1

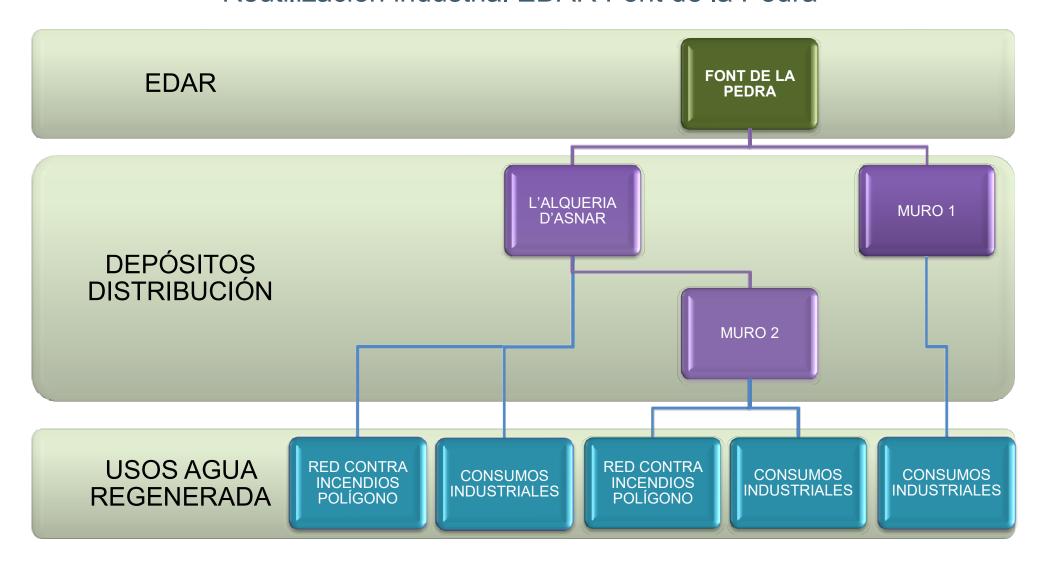
Reutilización de las aguas depuradas

Reutilización en el área metropolitana de Valencia



4.1

Reutilización de las aguas depuradas


Reutilización en la comarca de la Marina Baja de Alicante

Reutilización industrial EDAR Font de la Pedra



Economía circular.

ELEMENTOS VALORIZABLES

AGUA DEPURADA

- USO AGRÍCOLA
- USO INDUSTRIAL
- USO URBANO
- USO RECREATIVO
- USO AMBIENTAL

Lodos

- AGRICULTURA (APLICACIÓN DIRECTA O COMPOSTAJE)
- VALORIZACIÓN ENERGÉTICA
- RELLENO DE CANTERAS
- OTROS USOS

BIOGAS

- PRODUCCIÓN CALOR (CALDERAS)
- PRODUCCIÓN ENERGÍA Y CALOR (COGENERACIÓN)
- OTROS USOS
 (BIOGAS
 AUTOMÓVIL,
 INYECCIÓN EN RED
 GAS)

APLICACIÓN DE LODOS Y GESTIÓN DE RESIDUOS

Legislación Europea:

- Directiva 86/278/CEE del Consejo, de 12 de junio de 1986, relativa a la protección del medio ambiente y, en particular, de los suelos, en la utilización de los lodos de depuradora en agricultura.
- 4º Borrador de Directiva sobre aplicación agrícola de lodos

Legislación Española:

- Real Decreto 1310/1990, de 29 de octubre, por el que se regula la utilización de los lodos de depuradora en el sector agrario.
- Orden de 26 de octubre de 1993, sobre utilización de lodos de depuración en el sector agrario.
- Il Plan Nacional de Lodos de depuradora de Aguas Residuales (2007-2015).

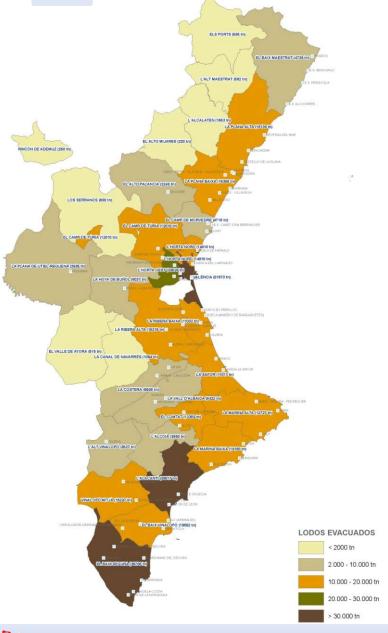
Legislación Valenciana:

Orden de 3 de agosto de 2017, sobre utilización de lodos de depuración en el sector agrario.

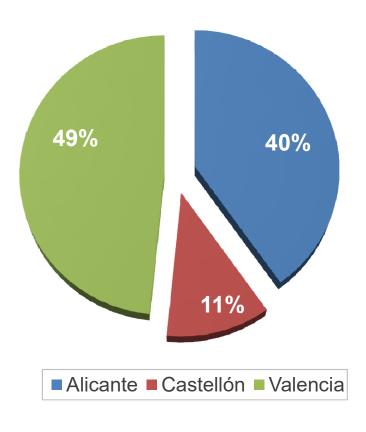
Criterios de gestión de los lodos

Lodos aptos para agricultura (cumplen RD 1310/90)

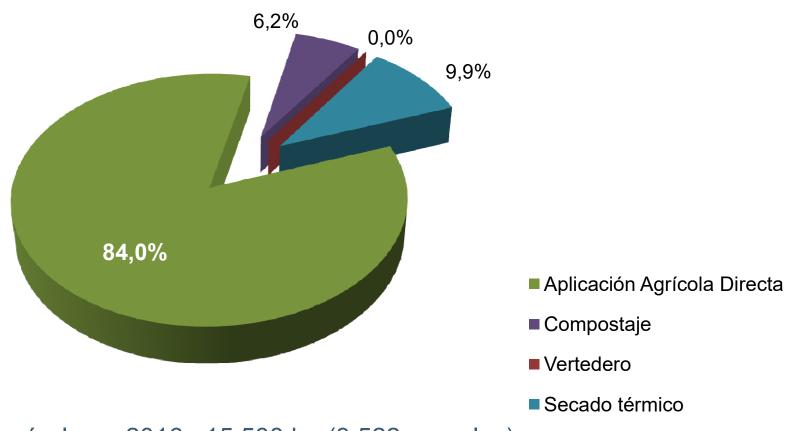
- 1. Valorización agrícola mediante aplicación directa
- 2. Compostaje y valorización agrícola
- 3. Secado térmico y valorización energética


Lodos no aptos para agricultura (no cumplen RD 1310/90)

- 1. Secado térmico y valorización energética
- 2. Vertedero

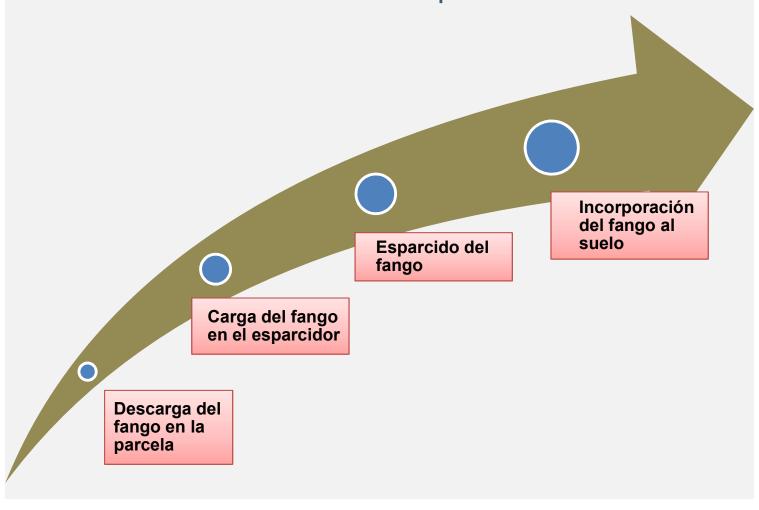


Total producción lodos: 368.000 T/año


Generación de lodos por comarcas/provincias

Aplicación agrícola en 2016: 15.538 ha (3.522 parcelas)

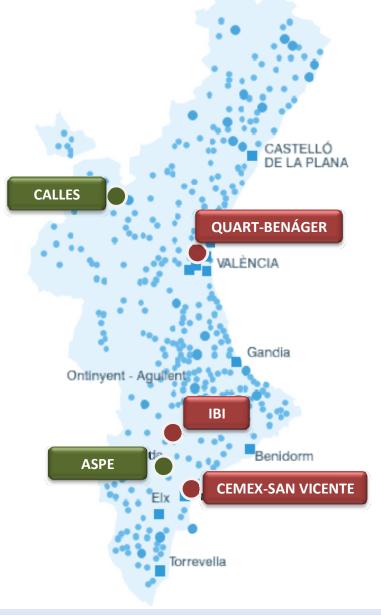
Dosis media aplicación de lodos: 19,86 t MH/ha (3,91 t MS/ha)



APLICACIÓN LODOS

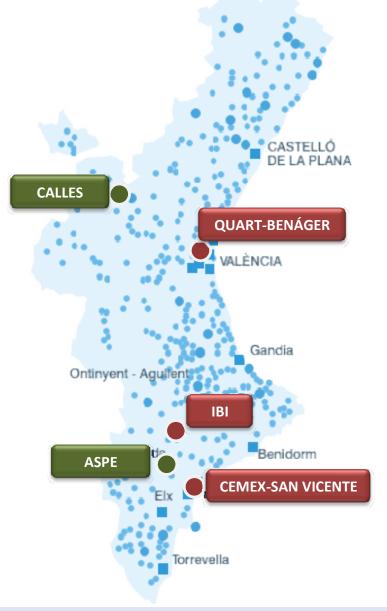
4.2 Valorización de los lodos generados

Fases de una adecuada aplicación de lodos



Instalaciones post-tratamiento lodos

	Capacidad t MH/año
 Plantas de compostaje 	
CALLES	30.000
ASPE	6.000


Plantas de secado térmico

IDI

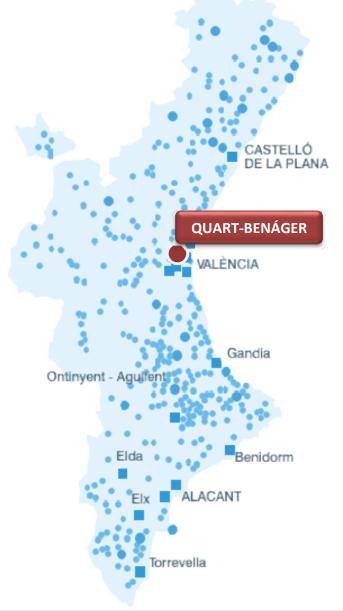
IBI	4.000
QUART - BENAGER	35.000
CEMEX – SAN VICENTE	55.000

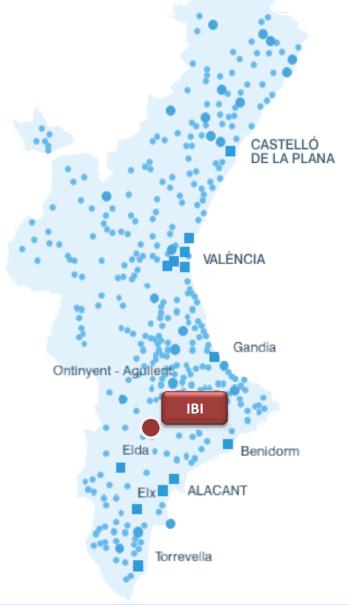
Instalaciones post-tratamiento lodos

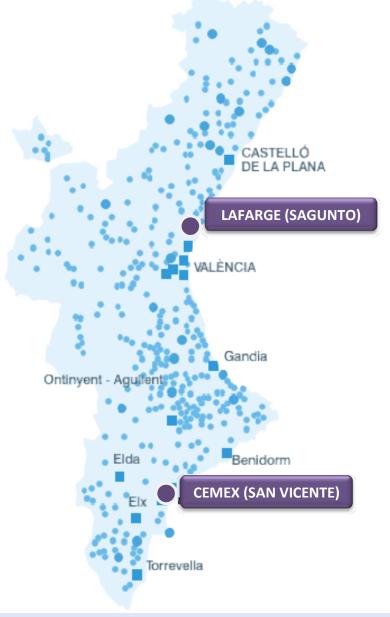
Plantas de compostaje	t MH/año
CALLES	10.291
ASPE	0
OTROS COMPOSTAJES	11.723
TOTAL	22.644

Plantas de secado térmico	t MH/año
IBI	958
QUART-BENÁGER	4.429
CEMEX (SAN VICENTE)	31.146
TOTAL	36.353

DATOS 2016







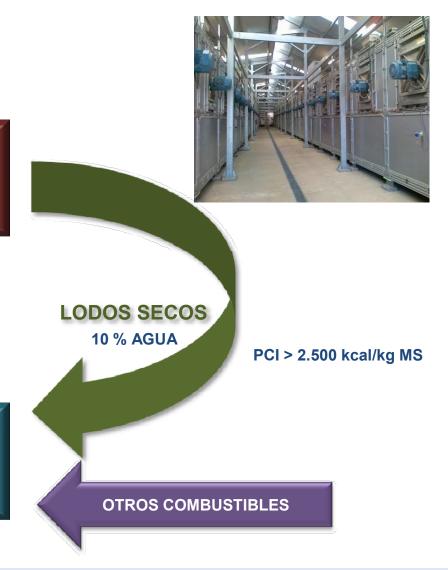
Instalaciones post-tratamiento lodos

Instalaciones valorización energética

(Convenios de colaboración con cementeras)

Valorización Energética (co-incineración) LAFARGE (SAGUNTO) **CEMEX (SAN VICENTE)**

Valorización energética	n energética t MH/año	
CEMEX (Alicante)	8.149	
ASLAND-LAFARGE (Sagunto)	0	
TOTAL	8.149	


VALORIZACIÓN ENERGÉTICA EN CEMENTERAS

SECADO TÉRMICO (55.000 tn MH/año)

CALOR

HORNO CEMENTERA (CEMEX – ALICANTE)

VALORIZACIÓN ENERGÉTICA EN CEMENTERAS. VENTAJAS

- > DISMINUCIÓN DEL CONSUMO DE COMBUSTIBLES FÓSILES.
 - > 1 Tm LODO AHORRA 0,25 Tm DE COQUE EN LA COMBUSTIÓN
- > REDUCCIÓN DE LAS EMISIONES DE CO2 A LA ATMÓSFERA.
 - > 1 Tm LODO AHORRA 1 T EMISIONES CO2
- > SE APROVECHA EL 100 % DE LA ENERGÍA CALORÍFICA SIN GENERAR NUEVOS SUBPRODUCTOS NI RESIDUOS. TOTAL DESTRUCCIÓN DEL RESIDUOS A 2.000 °c.
- > DESTRUCCIÓN DE UN RESIDUO QUE POR SI GENERA GASES DE EFECTO INVERNADERO.

Economía circular.

ELEMENTOS VALORIZABLES

AGUA DEPURADA

- USO AGRÍCOLA
- USO INDUSTRIAL
- USO URBANO
- USO RECREATIVO
- USO AMBIENTAL

LODOS

- AGRICULTURA (APLICACIÓN DIRECTA O COMPOSTAJE)
- VALORIZACIÓN ENERGÉTICA
- RELLENO DE CANTERAS
- OTROS USOS

BIOGAS

- PRODUCCIÓN CALOR (CALDERAS)
- PRODUCCIÓN ENERGÍA Y CALOR (COGENERACIÓN)
- OTROS USOS (BIOGAS AUTOMÓVIL, INYECCIÓN EN RED GAS)

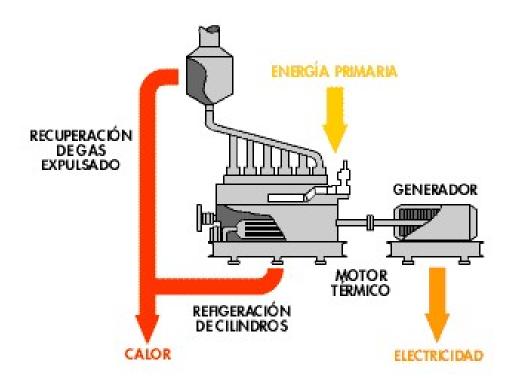
4.3

Valorización del biogás. Cogeneración eléctrica.

Producción calor (calderas)

> 60 CH₄

Producción energía y calor (cogeneración) > 64 CH₄



Otros usos: biogás comercial

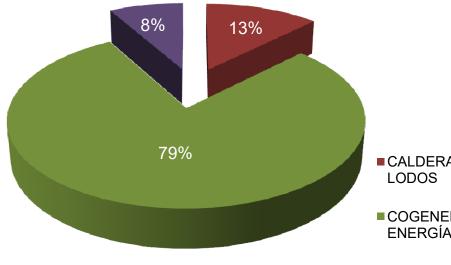
> 98 CH₄

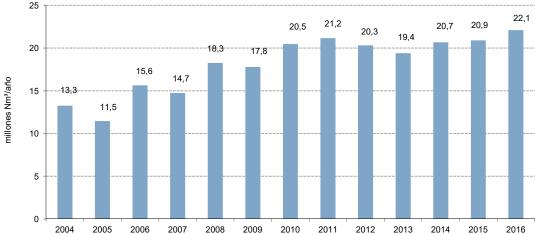
Ratios de producción	kWh/Nm3
Microturbinas 65 kW	1,61 – 1,75
Motor < 250 kW	1,83 – 2,02
Motor 250 – 400 kW	1,92 – 2,28
Motor > 400 kW	1,89 – 2,62

EDAR Pinedo 2 (1.068 kWe)

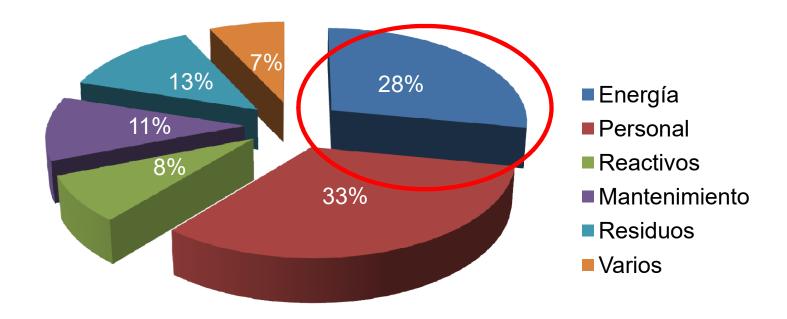
EDAR Pinedo 2 (496 kWe)

EDAR Novelda – Moforte del Cid (261 kWe)

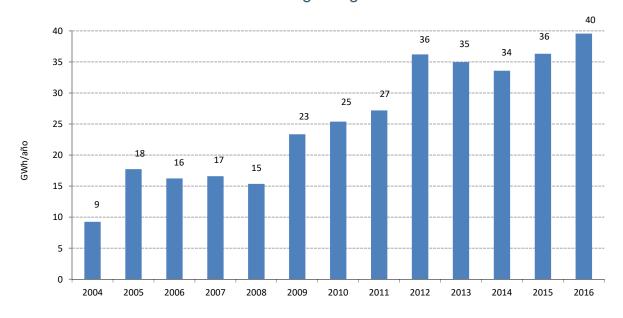

EDAR Paterna – Fuente del Jarro. Microturbinas (2 X 65 kWe)

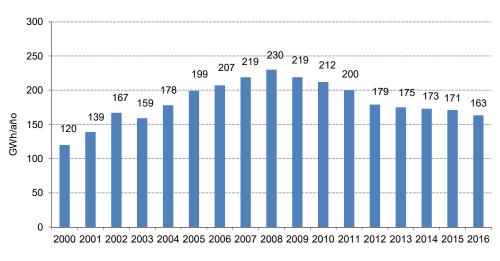


Biogas generado



- CALDERA CALENTAMIENTO DE
- COGENERACIÓN PRODUCCIÓN **ENERGÍA Y CALOR**
- ANTORCHA


% Coste explotación EDAR

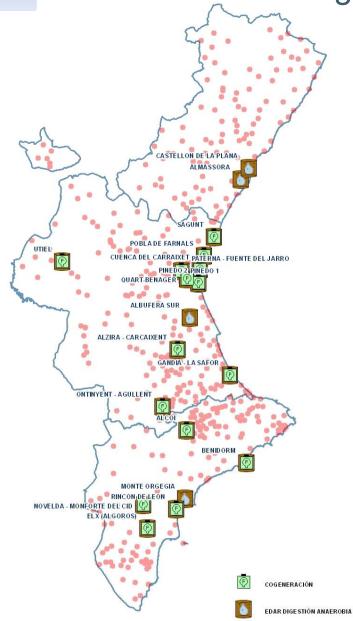


Energía cogenerada

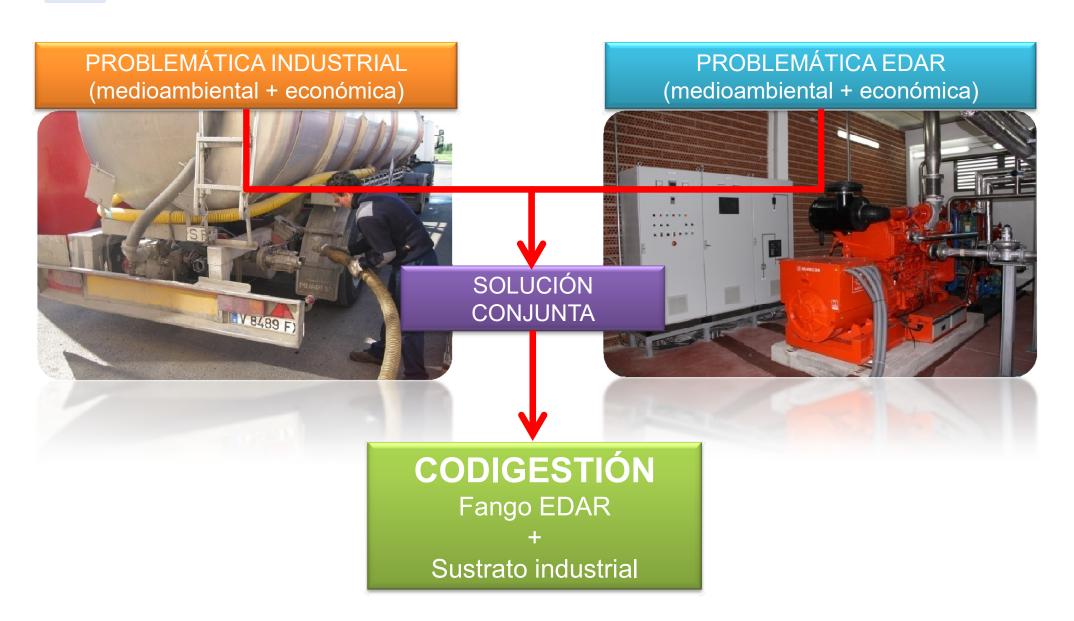
Energía consumida de la red



ENERGÍA COGENERADA EQUIVALE AL CONSUMO DE UN MUNICIPIO DE 33.0000 HABITANTES



Energía cogenerada – Energía red



INSTALACIÓN	POTENCIA INSTALADA (kW eléctricos)	ENERGÍA GENERADA (kWh/año)	
ALBUFERA SUR	300	1.372.600	
ALCOI	1.299	3.460.562	
ALZIRA - CARCAIXENT	330	1.782.087	
BENIDORM	472	1.809.475	
CASTELLÓN DE LA PLANA	500	1.949.000	
CUENCA DEL CARRAIXET	330	2.349.829	
ELX (ALGORÓS)	625	1.802.782	
GANDIA - LA SAFOR	311	1.121.079	
NOVELDA - MONFORTE DEL CID	261	314.512	
ONTINYENT - AGULLENT	288	141.058	
PATERNA - FUENTE DEL JARRO	130	1.105.520	
PINEDO 1	2.503	5.966.010	
PINEDO 2	1.589	9.588.100	
POBLA DE FARNALS	342	1.435.700	
QUART-BENÁGER	1.046	2.105.030	
RINCÓN DE LEÓN	460	2.228.500	
SAGUNT	330	1.031.173	
TOTAL	11.311	39.563.017	

4.3 Valorización de subproductos industriales. Codigestión

4.3

Valorización de subproductos industriales. Codigestión

Características generales de los subproductos a tratar por codigestión:

- Subproductos o residuos no peligrosos
- Efluentes líquidos o pastosos (bombeables)
- Elevada carga orgánica (> 50.000 mg/l DQO)
- Bajo contenido en sulfatos y sulfuros
- Sin presencia de biocidas
- Sin volumen mínimo requerido
- Entrega en cubas, contenedor GRG o depósito
- Industria agroalimentaria y otras procedencias (biocombustibles y lixiviados vertederos RSU, etc)

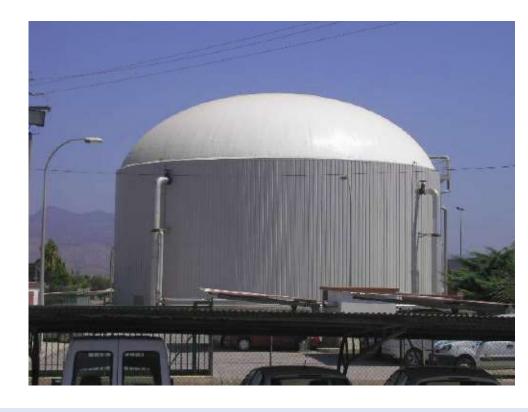
4.3 Valorización de subproductos industriales. Codigestión

Índices de codigestión en la comunidad valenciana

	2013	2014	2015	2016
m³ tratados subproductos	28.793	44.155	81.652	84.667
kg DQO tratados	2.598.239	5.893.244	9.000.669	8.922.856
Biogás generado Nm3 (%)	998.599 (5'15%)	1.944.808 (9,41%)	2.593.411 (12,41%)	2.131.810 (9,65%)
Nm3/kg DQO	0'38	0,33	0,29	0,24
kWh/kg DQO	0,70	0,69	0,59	0,51
Energía producida kWh	1.807.634	4.048.609	5.306.151	4.576.464

Subproductos procedentes de 85 empresas

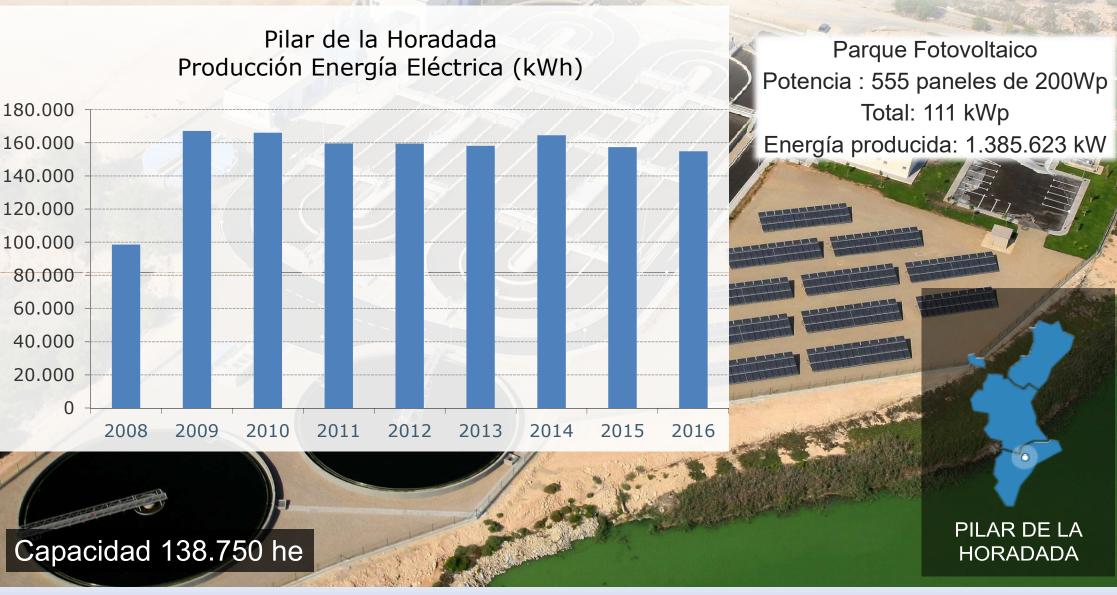
Potencial de tratamiento subproductos con instalaciones actuales: 14.000 tn DQO/año



4.3 Valorización de subproductos industriales. Codigestión

Aspectos a tener en cuenta en la codigestión:

- Coste de la codigestión
- Incremento en materia volátil del fango
- Incrementos en producción de lodos
- Variaciones en la calidad del biogás
- Necesidad de una "dieta" equilibrada



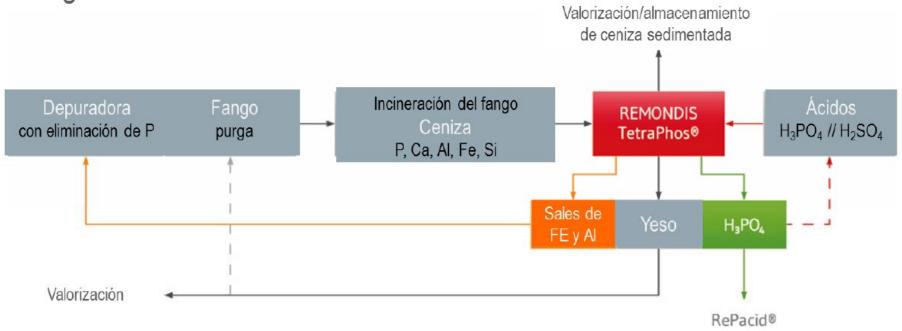
Otras tecnologías

Otras tecnologías. Energías renovables

Otras tecnologías. Extracción de estruvita

Estruvita MgNH₄PO₄-6H₂O

Mg 9,9% N 5,7% P 12,6%


Otras tecnologías. Extracción de fósforo

REMONDIS TetraPhos®

Integración

- La ceniza de fangos de aguas residuales que contiene fosfato se trata con ácido fosfórico diluido.
- La purificación del ácido fosfórico, enriquecido con fosfato, se realiza a través de cuatro etapas de selección.
- El resultado es la recuperación de ácido fosfórico de alta calidad.

Otras tecnologías. Proyectos LIFE

ECOdigestion

Sistema de control automático de dosificación de residuos en digestores anaerobios de EDAR para maximizar la producción de biogás como energía renovable

Presupuesto: 1.027.536 € (42,69 % financiado por la UE)

Duración: 1/09/2014 a 31/07/2017

COORDINADOR

socio

socio

LIFE STO3RE

Codigestión anaerobia mancomunada de fangos y purines combinada con ozonización y cavitación

Otras tecnologías. Proyectos LIFE

Co-oxidación en agua supercrítica (COASC) de lodos de depuradora y residuos

Condiciones de Operación y Resultados preliminares:

Alimentación = Lodo Mixto 3 – 7% m.s.

Caudal de Alimentación = 230 – 250 Kg/h

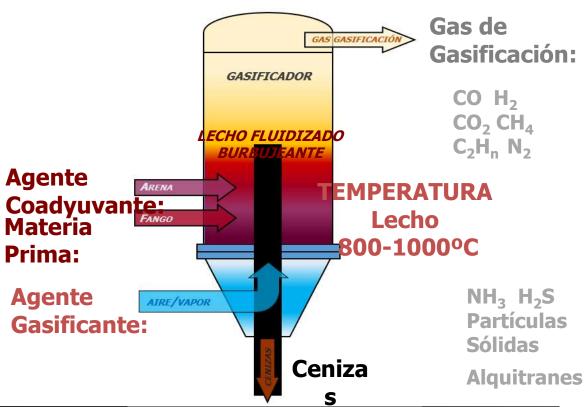
Caudal Oxígeno = 13 – 22 Kg/h

Presión del Sistema = 230 bar

Máxima Temperatura del Reactor = 580 °C

Eliminación de DQO > 99%

Efluente Gaseoso: $< 0.1 \text{ ppm NO}_2$, 0.45 ppm SO_2 , < 1 ppm NO, $< 1 \text{ ppm NH}_3$ *Socios:*



Otras tecnologías. Valorización de lodos

"Aplicación de la tecnología de gasificación para la valorización de fangos de EDAR"

Muchas gracias

Marzo 2018

